The basic fibroblastic growth factor (bFGF) was employed to stimulate the earlyrevascularization of the autogenous free fat grafts. In the experimental group the fibrin containingbFGF was mixed to the fat to be implanted, and the fat containing the fibrin only was used as thecontrol. The animals were perfused with Chenese ink through intubation to the aorta via the heart at 5 ,7, and 10 days after operation. The vascularizarion was significantly increased at the bFGF side ascompared with ...
Objective To evaluate the effect of composite (bFGF/PDPB) of basic fibroblast growth factor(bFGF) and partially deproteinized bone (PDPB) on the repair of femoral head defect. Methods Forty-eight femoral heads with defect derived from 24 New Zealand rabbits were divided into 3 groups at random, which were implanted with bFGF/PDPB(group A), PDPB(group B) and nothing(group C) respectively.The rabbits were sacrificed at 2,4,and8 weeks after operation, and then the femoral heads were obtained. The specimens injected with Chinese ink were created. Then X-ray examination, histopathological and morphological examination of blood vessel, and image analysis were made. Results The bone defects healed completely 8 weeks after operation in group A. The implants in the repaired tissue were not substituted completely in group B. The bone defects did not heal completely in group C. Two weeks after operation, affluent newly formed vessels were seen in repaired areas in groupA. No significant difference between group A and group B was observed 8 weeks after operation. In group C, newly formed vessels were scarce 2, 4, and 8 weeks after operation. There were 3 sides rated excellent, 2 good and 1 fair in group A; 1 excellent, 2 good, 2 fair and 1 poor in group B; and 1 fair and 5 poor in group C according to the X-ray evaluation 8 weeks after operation. Eight weeks after operation, the volume fraction of bone trabecula in repaired tissue was higher in group A than that in group B (Plt;0.05), and the fraction in group C was thelowest among the 3 groups (Plt;0.05). Conclusion The composite ofbFGF and PDPB can effectively promote the repair of femoral head defect of rabbit.
Objective To summarize functions and mechanisms of fibroblast activation protein (FAP) and its application in targeted therapy. Method Literatures about FAP in recent years were collected to make a review. Results Thereis an important relationship between the FAP and the dipeptidyl peptidase-Ⅳ. FAP has a serine protease activity and is an important immunosuppressive component in the tumor microenvironment. FAP participate in the pathological process of the neoplastic and the non-neoplastic diseases. In the targeted therapy, the enzyme inhibitors, antibodies, vaccines, and prodrugs of FAP had been extensively studied. Conclusion FAP have various functions and participates in pathological process of many diseases, and it is of great significance to research of tumor targeted therapy.
ObjectiveTo investigate the effect of transforming growth factorβ1 (TGF-β1) and basic fibroblast growth factor 1 (bFGF-1) on the cellular activities, prol iferation, and expressions of ligament-specific mRNA and proteins in bone marrow mesenchymal stem cells (BMSCs) and ligament fibroblasts (LFs) after directly co-cultured. MethodsBMSCs from 3-month-old Sprague Dawley rats were isolated and cultured using intensity gradient centrifugation. LFs were isolated using collagenase. The cells at passage 3 were divided into 6 groups: non-induced BMSCs group (group A), non-induced LFs group (group B), non-induced co-cultured BMSCs and LFs group (group C), induced BMSCs group (group D), induced LFs group (group E), and induced co-cultured BMSCs and LFs group (group F). The cellular activities and prol iferation were examined by inverted contrast microscope and MTT; the concentrations of collagen type Ⅰ and type Ⅲ were determined by ELISA; and mRNA expressions of collagen types I andⅢ, fibronectin, tenascin C, and matrix metalloproteinase 2 (MMP-2) were measured by real-time fluorescent quantitative PCR. ResultsA single cell layer formed in the co-cultured cells under inverted contrast microscope. Group F had fastest cell fusion ( > 90%). The MTT result indicated that group F showed the highest absorbance (A) value, followed by group D, and group B showed the lowest A value at 9 days after culture, showing significant difference (P < 0.05). Moreover, the result of ELISA showed that group F had the highest concentration of collagen type Ⅰ and type Ⅲ (P < 0.05); the concentration of collagen type Ⅲ in group E was significantly higher than that in group D (P < 0.05), but no significant difference was found in the concentration of collagen type Ⅰ between 2 groups (P > 0.05). The ratios of collagen type Ⅰ to type Ⅲ were 1.17, 1.19, 1.10, 1.25, 1.17, and 1.18 in groups A-F; group D was higher than the other groups. The real-time fluorescent quantitative PCR results revealed that the mRNA expressions of collagen type Ⅰ and type Ⅲ and fibronectin were highest in group F; the expression of tenascin C was highest in group D; the expression of MMP-2 was highest in group E; and all differencs were significant (P < 0.05). ConclusionDirectly co-cultured BMSCs and LFs induced by TGF-β1 and bFGF-1 have higher cellular activities, proliferation, and expressions of ligament-specific mRNA and protein, which can be used as a potential source for ligament tissue engineering.
OBJECTIVE: To explore the expression of basic fibroblast growth factor(bFGF) during the wound healing of human fetal and adult skin and its significance. METHODS: We established the animal model of fetal scarless healing by transplanting full-thickness skin grafts from human fetus to a subcutaneous location on the athymic mouse recipient, and then making the linear incisions. The expression of bFGF was observed in the normal adult skin, normal fetal skin and during wound healing by immunohistochemical method. The positive staining cells were counted under selected high-power focus randomly. RESULTS: bFGF staining was not observed in the normal fetal skin and the wounded one. However, bly positive staining was shown around the vessels in normal adult skin. Moreover, the positive straining became ber in the wounded skin, especially in dermal fibroblasts and endotheliocytes. The number of positive staining cell was 2.1 +/- 0.1 in normal fetal skin, and 2.2 +/- 0.1, 2.1 +/- 0.3, 2.1 +/- 0.3 and 2.0 +/- 0.1 in the fetal skins after 12 hours, 1 day, 3 days and 7 days of wound respectively. The number of positive staining cell were 23.2 +/- 4.2 in normal adult skin and 40.5 +/- 3.6 in the wound adult skin. There was significant difference between the fetal skin and adult skin (P lt; 0.01). CONCLUSION: The negative expression of bFGF in the fetal skin may be one of the important reasons for fetal scarless healing.
Objective To study the biocompatibility of tendon mixedextraction of bovine collagen(tMEBC) and to explore the feasibility of using the threedimensional framework as periodontal tissue engineering scaffold. Methods After being prepared, the tMEBC were cultured with the P4P6 of human periodontal ligament fibroblasts (HPDLFs) in vitro. Threedimensional framework was prepared from bovine tendon. The P4-P6 of HPDLFs (with an initial density of 5×106 cells/ml) were cultured in vitro. Cell attachment andproliferation were measured by cell counting 1 day, 3,5, and 10 days after cell seeding. Histological examination was performed with light microscope and scanning electron microscope 5 and 10 days after cell seeding. Results Porous structure, which supported the proliferation and attachment of HPDLFs, was found in tMEBC. The density of cell increased from 0.556×104 cells/ml 24 hours after cell seeding to 3.944×104 cells/ml 10 days after seeding. Light and scanning electron microscope examinationindicated that HPDLFs were attached and extended on the three-dimensional scaffolds and were well embedded in the newly formed tissue matrix. ConclusiontMEBC has good biocompatibility with the HPDLFs, and can be used as scaffold for cell transplantation in periodontal tissue engineering.
Objective To investigate the proliferation inhibitory effect and to explore the molecular mechanism of curcumin on pulmonary fibroblasts. Methods Fibroblasts derived from lung tissue of patients with idiopathic pulmonary fibrosis ( IPF) was cultured in vitro and incubated with curcumin at different concentrations for different time. Fibroblasts were randomized into 5 groups, ie. a control group and 4 curcumin groups ( intervened by 5, 10, 20, 40 μmol / L curcumin, respectively) . MTT assay was used to determine the inhibitory rate of curcumin on the proliferation of pulmonary fibroblasts. Apoptosis and the Caspase-3 expression of pulmonary fibroblasts were identified by flow cytometry ( FCM) . Variables were compared with One-Way ANOVA. The correlations between variables were analyzed using Pearson’scorrelation coefficient. Results Curcumin inhibited pulmonary fibroblasts proliferation in a dose-dependent and time-dependent manner( r =0. 886, r = 0. 832, respectively, all P lt; 0. 01) . Apoptosis rate of pulmonary fibroblasts in 4 curcumin groups was ( 29. 58 ±2. 13) % , ( 64. 36 ±3. 92) %, ( 72. 98 ±4. 42) % , ( 83. 14 ±2. 51) % , respectively, which was significantly higher than that in the control group[ ( 3. 84 ±1. 88) % , P lt;0. 01] . The positive expression rate of apoptosis-regulating protein caspase-3 was ( 26. 24 ±3. 64) % ,( 44. 87 ±5. 31) % , ( 57. 44 ±4. 23) % , ( 73. 65 ±5. 01) % , respectively, which was significantly higher than that of the control group[ ( 4. 02 ±0. 62) % , P lt; 0. 01] . Conclusions In vitro, curcumin can significantly inhibit proliferation and induce apoptosis of pulmonary fibroblasts of patients with IPF. The mechanism maybe associated with up-regulating expression of Caspase-3.
Objective To summarize and review the heterogeneity of bone marrow derived stem cells (BMDSCs) and its formation mechanism and significance, and to analyze the possible roles and mechanisms in intestinal epithel ial reconstruction. Methods The related l iterature about BMDSCs heterogeneity and its role in intestinal epithel ial repair was reviewed and analyzed. Results The heterogeneity of BMDSCs provided better explanations for its multi-potency. The probable mechanisms of BMDSCs to repair intestinal epithel ium included direct implantation into intestinal epithel ium, fusion between BMDSCs and intestinal stem cells, and promotion of injury microcirculation reconstruction. Conclusion BMDSCs have a bright future in gastrointestinal injury caused by inflammatory bowl disease and regeneration.
OBJECTIVE The biological effects of recombinant human epidermal growth factor (rhEGF) and recombinant human fibroblast growth factor (rhFGF) were evaluated on the model of incised wounds in mini pigs. METHODS Total of 160 incised wounds in 16 mini pigs were divided into two groups (rhEGF group and rhFGF group), each containing 80 wounds. In rhEGF group, 60 incised wounds were treated with different dosages of rhEGF (50, 10 and 0.5 micrograms/wound), and another 20 wounds were treated with solvent as control group. In rhFGF group, all wounds were treated in the same way as described in rhEGF group, the dosages of rhFGF were 150, 90 and 30 U/cm2 respectively. The measurements of cavity volume and area in wound, histological examination were used to evaluate the results of wound healing. RESULTS The results showed that wound healing was accelerated in all wounds treated with rhEGF and rhFGF. In rhEGF group, the velocity of re-epithelialization was faster than that of rhFGF group, however, new granulation tissue in rhFGF was more than that of rhEGF group. CONCLUSION The results indicate that rhEGF and rhFGF can stimulate wound healing, however, the mechanisms and the biological effects involved in these processes are quite different. It suggests that it is better to use rhFGF in those wounds which need more granulation tissue formation and use rhEGF in the wounds which mainly need re-epithelialization.
Objective To explore the effect of basic fibroblast growth factor(bFGF)and epidermal growth factor(EGF)on the growth of muscle derived stem cells(MDSCs). Methods MDSCs were isolated from hindlimb muscle of 15 new born Kunming mice through serial preplates. 2% fetal bovine serum-containing DMEM was used to induce MDSCs to differentiate into skeletal muscle lineage. The expressions of stem cell marker Sca-1 and skeletal musclecell marker αSarcomeric actin were examined by immunocytochemistry. The effect of bFGF and EGF on the proliferation of MDSCs was determined by MTT colorimetric microassay. The solo effect of bFGF or EGF at different concentrations (6.25,12.50, 25.00, 50.00, and 100.00 ng/ml) was examined at 96 h and the combined effect (100.00 ng/ml) was examined at 24,48,72 and 96 h.Results MDSCs were successfully isolated from the hindlimb of neonatal mice. Over 90% of MDSCs showed Sca-1 positive immunoreactivity. MDSCs could give rise to α Sarcomeric actin positive myotubes in differentiation cultures. The proliferative effect of bFGF and EGF on MDSCs increased with the elevated concentration.bFGF began to show significant proliferative effect at 12.50 ng/ml (P<0.05). The effect increased significantly when the concentration reached 25.00 ng/ml from 12.50 ng/ml (P<0.01) and reached a saturation point. The effect at 50.00 ng/ml or 100.00 ng/ml showed no significant increase when compared with thatat 25.00 ng/ml. EGF had a similar effect to bFGF except that the saturation concentration was 50.00 ng/ml. EGF showed significant effect at 72 h and bFGF at 96 h (Plt;0.01). When they were applied together, significant effect was shownat 24 h (Plt;0.01) and much higher effect was observed at 48, 72 and 96 h (Plt;0.05). Conclusion Both bFGF and EGF can promote the proliferation of MDSCs. The combined application reacts faster and ber.