Objective To summarize and review the heterogeneity of bone marrow derived stem cells (BMDSCs) and its formation mechanism and significance, and to analyze the possible roles and mechanisms in intestinal epithel ial reconstruction. Methods The related l iterature about BMDSCs heterogeneity and its role in intestinal epithel ial repair was reviewed and analyzed. Results The heterogeneity of BMDSCs provided better explanations for its multi-potency. The probable mechanisms of BMDSCs to repair intestinal epithel ium included direct implantation into intestinal epithel ium, fusion between BMDSCs and intestinal stem cells, and promotion of injury microcirculation reconstruction. Conclusion BMDSCs have a bright future in gastrointestinal injury caused by inflammatory bowl disease and regeneration.
Objective To investigate the role and mechanism of S100 calcium binding protein B (S100B) in osteoarthritis (OA) cartilage damage repair. Methods Twenty New Zealand rabbits were randomly divided into control group and model group, with 10 rabbits in each group. Rabbits in the model group were injured by the right knee joint immobilization method to make the artilage injury model, while the control group did not deal with any injury. After 4 weeks, the levels of interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α) in synovial fluid were detected by ELISA method; the mRNA and protein expressions of S100B, fibroblast growth factor 2 (FGF-2), and FGF receptor 1 (FGFR1) in cartilage tissue were examined by real-time fluorescence quantitative PCR (qRT-PCR) and Western blot assay. Human synovial fibroblasts (SF) were isolated and cultured in vitro. The effects of S100B overexpression and knockdown on the levels of IL-1β and TNF-α (ELISA method) and the expressions of FGF-2 and FGFR1 gene (qRT-PCR) and protein (Western blot) were observed. Moreover, the effects of FGFR1 knockdown in above S100 overexpression system on the levels of IL-1β and TNF-α (ELISA method) and the expressions of FGF-2 and FGFR1 gene (qRT-PCR) and protein (Western blot) were observed. Results ELISA detection showed that the expressions of IL-1β and TNF-α in the synovial fluid of the model group were significantly higher than those of the control group (P<0.05); qRT-PCR and Western blot detection showed that the mRNA and protein expressions of S100B, FGF-2, and FGFR1 in cartilage tissue were significantly higher than those of the control group (P<0.05). Overexpression and knockdown S100 could respectively significantly increase and decrease lipopolysaccharides (LPS) induced IL-1β and TNF-α levels elevation and the mRNA and protein expressions of FGF-2 and FGFR1 (P<0.05); whereas FGFR1 knockdown could significantly decrease LPS induced IL-1β and TNF-α levels elevation and the mRNA and protein expressions of FGF-2 and FGFR1 (P<0.05). Conclusion S100B protein can regulate the inflammatory response of SF and may affect the repair of cartilage damage in OA, and the mechanism may be related to the activation of FGF-2/FGFR1 signaling pathway.
Objective To investigate the effects of heat injured keratinocytes (KC) supernatant on the expressions of collagen type I, collagen type III, and matrix metalloproteinase 1 (MMP-1) of dermal fibroblasts (Fb). Methods KC and Fb were isolated and cultured. Then the models of heat injured KC and Fb were reproduced in vitro, respectively. The heat injured and normal culture supernatant were collected respectively at 12 hours, and formulated as a 50% concentration of cell-conditioned medium. According to the culture medium, Fb at passage 3-5 was divided into 3 groups. Normal Fb was cultured with the conditioned medium containing 50% heat injured KC culture supernatant (group A), the conditioned medium containing 50% normal KC culture supernatant (group B), and DMEM (group C), respectively. The cells in 3 groups were collected at 24 hours. In addition, the cells in group A were collected at 0, 1, 2, 6, 12, 24, and 48 hours, respectively. Normal Fb was cultured with the conditioned medium containing 50% heat injured Fb culture supernatant. Then, the cells were collected at 0, 1, 2, 6, 12, 24, and 48 hours, respectively. The mRNA levels of the collagen type I, collagen type III, and MMP-1 of Fb were measured by real-time fluorescent quantitative PCR techniques. Results At 24 hours after cultured with supernatant of heat injured KC,mRNA relative expression levels of collagen type I, collagen type III, and MMP-1 in group A were significantly higher than those in groups B and C (P lt; 0.05). The mRNA relative expression levels of collagen type I, collagen type III, and MMP-1 in group A gradually increased with time going, showing significant differences between 0 hour and 2, 6, 12, 24, and 48 hours (P lt; 0.05); significant differences were found between different time points after 2 hours (P lt; 0.05). After Fb was treated with supernatant of heat injured Fb, the mRNA relative expression levels of MMP-1 gradually decreased with time going, showing significant differences between 0 hour and 1, 2, 6, 12, 24, and 24 hours (P lt; 0.05); after 2 hours of culture, significant differences were found among different time points (P lt; 0.05). Conclusion Heat injured KC supernatant may regulate the mRNA expressions of collagen type I, collagen type III, and MMP-1 of Fb.
Objective To investigate whether human amniotic mesenchymal stem cells (hAMSCs) have the characteristics of mesenchymal stem cells (MSCs) and the differentiation capacity into ligament fibroblastsin vitro. Methods The hAMSCs were separated through trypsin and collagenase digestion from placenta, the phenotypic characteristics of hAMSCs were detected by flow cytometry, the cytokeratin-19 (CK-19) and vimentin expression of hAMSCs were tested through immunofluorescence staining. The hAMSCs at the 3rd passage were cultured with L-DMEM/F12 medium containing transforming growth factor β1 (TGF-β1) and vascular endothelial growth factor (VEGF) as the experimental group and with single L-DMEM/F12 medium as the control group. The morphology of hAMSCs was observed by inverted phase contrast microscope; the cellular activities and ability of proliferation were examined by cell counting kit-8 (CCK-8) method; the ligament fibroblasts related protein expressions including collagen type I, collagen type III, Fibronectin, and Tenascin-C were detected by immunofluorescence staining; specific mRNA expressions of ligament fibroblasts and angiogenesis including collagen type I, collagen type III, Fibronectin, α-smooth muscle actin (α-SMA), and VEGF were measured by real-time fluorescence quantitative PCR. Results The hAMSCs presented monolayer and adherent growth under inverted phase contrast microscope; the flow cytometry results demonstrated that hAMSCs expressed the MSCs phenotypes; the immunofluorescence staining results indicated the hAMSCs had high expression of the vimentin and low expression of CK-19; the hAMSCs possessed the differentiation ability into the osteoblasts, chondroblasts, and lipoblasts. The CCK-8 results displayed that cells reached the peak of growth curve at 7 days in each group, and the proliferation ability in the experimental group was significantly higher than that in the control group at 7 days (P<0.05). The immunofluorescence staining results showed that the expressions of collagen type I, collagen type III, Fibronectin, and Tenascin-C in the experimental group were significantly higher than those in the control group at 5, 10, and15 days after culture (P<0.05). The real-time fluorescence quantitative PCR results revealed that the mRNA relative expressions had an increasing tendency at varying degrees with time in the experimental group (P<0.05). The relative mRNA expressions of collagen type I, collagen type III, Fibronectin, α-SMA, and VEGF in the experimental group were significantly higher than those in the control group at the other time points (P<0.05), but no significant difference was found in the relative mRNA expressions of collagen type I, collagen type III, and VEGF between 2 groups at 5 days (P>0.05). Conclusion The hAMSCs possesses the characteristics of MSCs and good proliferation ability which could be chosen as seed cell source in tissue engineering. The expressions of ligament fibroblasts and angiogenesis related genes could be up-regulated, after inductionin vitro, and the synthesis of ligament fibroblasts related proteins could be strengthened. In addition, the application of TGF-β1 and VEGF could be used as growth factors sources in constructing tissue engineered ligament.
ObjectiveTo investigate the effect of microRNA-135a (miR-135a) in human amnion mesenchymal stem cell exosome (hAMSC-Exo) on the migration of fibroblasts.MethodsThe hAMSC-Exo was extracted with exosomes separation kit and identified, the effect of hAMSC-Exo on fibroblasts migration was detected by scratch test. Real-time fluorescence quantitative PCR (qRT-PCR) was used to detect the relative expression of miR-135a gene in hAMSC-Exo after overexpression of miR-135a. Scratch test was used to detect the effect of hAMSC-Exo on the migration of fibroblasts after overexpression and knockdown of miR-135a. Western blot was used to detect the migration related proteins of fibroblasts [large tumor suppressor 2 (LATS2), E-cadherin, N-cadherin, and α smooth muscle actin (α-SMA)] after overexpression and knockdown of miR-135a. The 293T cell exosomes and hAMSC-Exo were used as control.ResultshAMSC-Exos were extracted successfully. Scratch test results showed that hAMSC group had the strongest ability to promote fibroblasts migration, and GW4869 (exosome inhibitor) treatment group had reduced ability to promote fibroblasts migration. qRT-PCR test showed that the relative expression of miR-135a gene in hAMSC-Exo increased significantly after over expression of miR-135a. Scratch test results showed that after over expression of miR-135a, hAMSC-Exo enhanced the migration ability of fibroblasts, while after knockdown of miR-135a, hAMSC-Exo weakened the migration ability of fibroblasts. Western blot results showed that the expressions of E-cadherin, N-cadherin, LATS2 were down regulated and α-SMA was up regulated in each hAMSC-Exo treatment group when compared with 293T cell exosomes group; after over expression of miR-135a, hAMSC-Exo decreased the expressions of E-cadherin, N-cadherin, LATS2 and increased the expression of α-SMA; while after knockdown of miR-135a, the ability of hAMSC-Exo was weakened.ConclusionmiR-135a in hAMSC-Exo can promote fibroblasts’ migration, inhibit the expressions of E-cadherin, N-cadherin, LATS2, and promote the expression of α-SMA.
ObjectiveTo investigate the effect of transforming growth factorβ1 (TGF-β1) and basic fibroblast growth factor 1 (bFGF-1) on the cellular activities, prol iferation, and expressions of ligament-specific mRNA and proteins in bone marrow mesenchymal stem cells (BMSCs) and ligament fibroblasts (LFs) after directly co-cultured. MethodsBMSCs from 3-month-old Sprague Dawley rats were isolated and cultured using intensity gradient centrifugation. LFs were isolated using collagenase. The cells at passage 3 were divided into 6 groups: non-induced BMSCs group (group A), non-induced LFs group (group B), non-induced co-cultured BMSCs and LFs group (group C), induced BMSCs group (group D), induced LFs group (group E), and induced co-cultured BMSCs and LFs group (group F). The cellular activities and prol iferation were examined by inverted contrast microscope and MTT; the concentrations of collagen type Ⅰ and type Ⅲ were determined by ELISA; and mRNA expressions of collagen types I andⅢ, fibronectin, tenascin C, and matrix metalloproteinase 2 (MMP-2) were measured by real-time fluorescent quantitative PCR. ResultsA single cell layer formed in the co-cultured cells under inverted contrast microscope. Group F had fastest cell fusion ( > 90%). The MTT result indicated that group F showed the highest absorbance (A) value, followed by group D, and group B showed the lowest A value at 9 days after culture, showing significant difference (P < 0.05). Moreover, the result of ELISA showed that group F had the highest concentration of collagen type Ⅰ and type Ⅲ (P < 0.05); the concentration of collagen type Ⅲ in group E was significantly higher than that in group D (P < 0.05), but no significant difference was found in the concentration of collagen type Ⅰ between 2 groups (P > 0.05). The ratios of collagen type Ⅰ to type Ⅲ were 1.17, 1.19, 1.10, 1.25, 1.17, and 1.18 in groups A-F; group D was higher than the other groups. The real-time fluorescent quantitative PCR results revealed that the mRNA expressions of collagen type Ⅰ and type Ⅲ and fibronectin were highest in group F; the expression of tenascin C was highest in group D; the expression of MMP-2 was highest in group E; and all differencs were significant (P < 0.05). ConclusionDirectly co-cultured BMSCs and LFs induced by TGF-β1 and bFGF-1 have higher cellular activities, proliferation, and expressions of ligament-specific mRNA and protein, which can be used as a potential source for ligament tissue engineering.
Objective To investigate the preparation of decellularized Achilles tendons and the effect of co-culture of human fibroblasts on the scaffold so as to provide a scaffold for the tissue engineered ligament reconstruction. Methods Achilles tendons of both hind limbs were harvested from 10 male New Zealand white rabbits (5-month-old; weighing, 4-5 kg). The Achilles tendons were decellularized using trypsin, Triton X-100, and sodium dodecyl sulfate (SDS), and then gross observation, histological examination, and scanning electron microscope (SEM) observation were performed; the human fibroblasts were seeded on the decellularized Achilles tendon, and then cytocompatibility was tested using the cell counting kit 8 method at 1, 3, 5, 7, and 9 days after co-culture. At 4 weeks after co-culture, SEM, HE staining, and biomechanical test were performed for observing cell-scaffold composite, and a comparison was made with before and after decellularization. ResultsAfter decellularization, the tendons had integrated aponeurosis and enlarged volume with soft texture and good toughness; there was no loose connective tissue and tendon cells between tendon bundles, the collagen fibers arranged loosely with three-dimensional network structure and more pores between tendon bundles; and it had good cytocompatibility. At 4 weeks after co-culture, cells migrated into the pores, and three-dimensional network structure disappeared. By biomechanical test, the tensile strength and Young’s elastic modulus of the decellularized Achilles tendon group decreased significantly when compared with normal Achilles tendons group and cell-scaffold composite group (P lt; 0.05), but no significant difference was found between normal Achilles tendons group and cell-scaffold composite group (P gt; 0.05). There was no significant difference in elongation at break among 3 groups (P gt; 0.05). ConclusionThe decellularized Achilles tendon is biocompatible to fibroblasts. It is suit for the scaffold for tissue engineered ligament reconstruction.
Objective Through analyzing BKCa channel expression in atrial fibroblasts in patients with sinus rhythm and atrial fibrillation (AF), to explore the mechanism of myocardial fibrosis and provide new therapeutic strategies for the treatment and reversal of AF structure reconstruction. Methods We selected 10 patients of rheumatic heart valvular disease who underwent valve replacement surgery. They were 5 patients with sinus rhythm (a sinus rhythm group, 2 males and 3 females with an average age of 49.1±8.3 years) and 5 with AF (an AF group, 3 males and 2 females with an average age of 50.3±5.8 years). About 100 mg tissue was obtained from the right auricula dextra, and the atrial fibroblasts were cultured by tissue block adherence method, and the expression of BKCa channel genes and proteins in cultured fibroblasts was detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting methods. Results (1) The general data of 10 patients between the AF group and the sinus rhythm group were compared. There was no significant difference between the two groups in age (t=1.21, P=0.67) and sex (t=2.56, P=0.75). There was statistical difference in the left atrial diameter and the right atrium diameter between the two groups (t=19.45, P=0.01; t=23.52, P=0.06); (2) the mRNA expression of BKCa subunit was detected by qRT-PCR method, and there was no significant difference in the mRNA expression of BKCa α and BKCa β1 between the two groups (t=3.14, P=0.79; t=2.88, P=0.69); (3) the expression of BKCa protein was detected by western blotting method, and there was no significant difference in the protein expression of BKCa α and BKCa β1 between the two groups (t=0.55, P=0.31; t=0.73, P=0.46). Conclusion BKCa pathway may not be involved in the pathogenesis and maintenance of AF, but it may play an important role in the process of myocardial fibrosis.
Objective To study the biocompatibility of tendon mixedextraction of bovine collagen(tMEBC) and to explore the feasibility of using the threedimensional framework as periodontal tissue engineering scaffold. Methods After being prepared, the tMEBC were cultured with the P4P6 of human periodontal ligament fibroblasts (HPDLFs) in vitro. Threedimensional framework was prepared from bovine tendon. The P4-P6 of HPDLFs (with an initial density of 5×106 cells/ml) were cultured in vitro. Cell attachment andproliferation were measured by cell counting 1 day, 3,5, and 10 days after cell seeding. Histological examination was performed with light microscope and scanning electron microscope 5 and 10 days after cell seeding. Results Porous structure, which supported the proliferation and attachment of HPDLFs, was found in tMEBC. The density of cell increased from 0.556×104 cells/ml 24 hours after cell seeding to 3.944×104 cells/ml 10 days after seeding. Light and scanning electron microscope examinationindicated that HPDLFs were attached and extended on the three-dimensional scaffolds and were well embedded in the newly formed tissue matrix. ConclusiontMEBC has good biocompatibility with the HPDLFs, and can be used as scaffold for cell transplantation in periodontal tissue engineering.
ObjectiveTo optimize the culture method of human primary pancreatic ductal adenocarcinoma (PDAC) cells and cancer associated fibroblasts (CAFs) and investigate the effect of CAFs on the growth of primary PDAC cells in vitro and tumor formation in patient-derived xenograft (PDX) model.MethodsThe PDAC specimens were collected and primarily cultured. In order to observe the effect of CAFs on the growth of primary PDAC cells in vitro, the CAFs were co-cultured with primary PDAC cells consistently and the alone cultured primary PDAC cells served as the control. Then, these cells were injected into the shoulder blades of NOG mice in order to develop the PDX model.ResultsWhen the primary PDAC cells separated from the CAFs, the proliferation capacity of the primary PDAC decreased rapidly in the passage culture in vitro, and the most cells were terminated within 5 generations. By contrast, when the CAFs co-cultured with the primary PDAC cells, the proliferation capacity of primary PDAC cells were preserved, which could be stably transferred to at least 10 generations. The tumors of NOG mice were detected during 2–3 weeks after injecting the mixed cells (primary PDAC plus CAFs), while had no tumor formation after injecting CAFs alone. The rate of tumor was 92.9% (13 cases) in the primary PDAC plus CAFs group, which was higher than that of the CAFs alone group (64.3%, 9 cases), but there was no statistical difference because of the small sample size. The volume of tumor in the primary PDAC plus CAFs group at 2, 4, 6, and 8 weeks after the tumor cells injection was significantly larger than that in the CAFs alone group at the corresponding time point, the differences were statistically significant (P<0.01).ConclusionsThe CAFs could promote the growth of primary PDAC cells in vitro. This new method of co-culture CAFs with primary PDAC could improve the success rate of primary PDAC cells culture and improve the success rate of PDX model in NOG mice.