Tinnitus is a subjective sensation of sound without external stimulation. It has become ubiquitous and has therefore aroused much attention in recent years. According to the survey, ameliorating tinnitus based on special music and reducing pressure have good effects on the treatment of it. Meantime, vicious cycle chains between tinnitus and bad feelings have been broken. However, tinnitus therapy has been restricted by using looping music. Therefore, a method of generating fractal tones based on musical instrument digital interface (MIDI) technology and pink noise has been proposed in this paper. The experimental results showed that the fractal fragments were self-similar, incompletely reduplicate, and no sudden changes in pitches and would have a referential significance for tinnitus therapy.
Fractal, a mathematics concept, is used to describe an image of self-similarity and scale invariance. Some organisms have been discovered with the fractal characteristics, such as cerebral cortex surface, retinal vessel structure, cardiovascular network, and trabecular bone, etc. It has been preliminarily confirmed that the three-dimensional structure of cells cultured in vitro could be significantly enhanced by bionic fractal surface. Moreover, fractal theory in clinical research will help early diagnosis and treatment of diseases, reducing the patient's pain and suffering. The development process of diseases in the human body can be expressed by the fractal theories parameter. It is of considerable significance to retrospectively review the preparation and application of fractal surface and its diagnostic value in medicine. This paper gives an application of fractal and its theories in the medical science, based on the research achievements in our laboratory.
The linear analysis for heart rate variability (HRV), including time domain method, frequency domain method and timefrequency analysis, has reached a lot of consensus. The nonlinear analysis has also been widely applied in biomedical and clinical researches. However, for nonlinear HRV analysis, especially for shortterm nonlinear HRV analysis, controversy still exists, and a unified standard and conclusion has not been formed. This paper reviews and discusses three shortterm nonlinear HRV analysis methods (fractal dimension, entropy and complexity) and their principles, progresses and problems in clinical application in detail, in order to provide a reference for accurate application in clinical medicine.
The multi-fractal de-trended fluctuation analysis was used to estimate the mental stress in the present study. In order to obtain the optimal fractal order of the multi-fractal de-trended fluctuation analysis, we analyzed the relationship between singular index and Hurst index with order. We recorded the electroencephalogram (EEG) of 14 students, compared the relationship between singular index, Hurst index and quality index, ensured the optimal order being [—5, 5] and achieved the estimation of mental stress with the β wave in the EEGs. The result indicated that Hurst index and quality index of the EEGs under mental stress were greater than those of EEGs in the relaxing state. The Hurst index was gradually decreasing with the order increasing and was finally approaching a constant, while the quality index was amplified and variation of amplitude of the singular index was more obvious. We also compared the amplitude and the width of singular spectrum of the EEGs under the two conditions, and results indicated that the characteristics of multi-fractal spectrum of the EEGs under different conditions were different, namely the width of singular spectrum of the EEGs under mental stress was greater than that under relax condition.
Tinnitus is a common clinical symptom. Researches have shown that fractal sound can effectively treat tinnitus. But current fractal sound is usually synthesized based on constant notes via fractal algorithm, which lead to monotony of synthesized fractal sound. So it is difficult to achieve personalized match. Clinical datas have confirmed that it is common to match tinnitus sound with nature sound and it has a good effect on regulating negative emotion and relieving tinnitus via some natural sound. Therefore, a new method of personalized synthesizing tinnitus rehabilitation sound based on iterative function system (IFS) fractal algorithm is proposed in this paper. This method firstly generates personalized audio library based on natural sound, then tinnitus rehabilitation sound is synthesized via IFS fractal algorithm. Simulation results show that rehabilitation sound in this paper can meet the basic requirements of tinnitus therapy sound and can match tinnitus sound by controlling personalized audio library. So it has reference significance to the treatment of tinnitus sound therapy.