west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "functional brain network" 2 results
  • Research on electroencephalogram specifics in patients with schizophrenia under cognitive load

    Cognitive impairment is one of the three primary symptoms of schizophrenic patients and shows important value in early detection and warning for high-risk individuals. To study the specifics of electroencephalogram (EEG) in patients with schizophrenia under the cognitive load, we collected EEG signals from 17 schizophrenic patients and 19 healthy controls, extracted signals of each band based on wavelet transform, calculated the characteristics of nonlinear dynamic and functional brain networks, and automatically classified the two groups of people by using a machine learning algorithm. Experimental results indicated that the correlation dimension and sample entropy showed significant differences in α, β, θ, and γ rhythm of the Fp1 and Fp2 electrodes between groups under the cognitive load. These results implied that the functional disruptions in the frontal lobe might be the important factors of cognitive impairments in schizophrenic patients. Further results of the automatic classification analysis indicated that the combination of nonlinear dynamics and functional brain network properties as the input characteristics of the classifier showed the best performance, with the accuracy of 76.77%, sensitivity of 72.09%, and specificity of 80.36%. The results of this study demonstrated that the combination of nonlinear dynamics and function brain network properties may be potential biomarkers for early screening and auxiliary diagnosis of schizophrenia.

    Release date:2020-04-18 10:01 Export PDF Favorites Scan
  • Topology properties of spatial navigation-related functional brain networks in crowds: a study based on graph theory analysis

    Objective To investigate the differences in the topology of functional brain networks between populations with good spatial navigation ability and those with poor spatial navigation ability. Methods From September 2020 to September 2021, 100 college students from PLA Army Border and Coastal Defense Academy were selected to test the spatial navigation ability. The 25 students with the highest spatial navigation ability were selected as the GN group, and the 25 with the lowest spatial navigation ability were selected as the PN group, and their resting-state functional MRI and 3D T1-weighted structural image data of the brain were collected. Graph theory analysis was applied to study the topology of the brain network, including global and local topological properties. Results The variations in the clustering coefficient, characteristic path length, and local efficiency between the GN and PN groups were not statistically significant within the threshold range (P>0.05). The brain functional connectivity networks of the GN and PN groups met the standardized clustering coefficient (γ)>1, the standardized characteristic path length (λ)≈1, and the small-world property (σ)>1, being consistent with small-world network property. The areas under curve (AUCs) for global efficiency (0.22±0.01 vs. 0.21±0.01), γ value (0.97±0.18 vs. 0.81±0.18) and σ value (0.75±0.13 vs. 0.64±0.13) of the GN group were higher than those of the PN group, and the differences were statistically significant (P<0.05); the between-group difference in AUC for λ value was not statistically significant (P>0.05). The results of the nodal level analysis showed that the AUCs for nodal clustering coefficients in the left superior frontal gyrus of orbital region (0.29±0.05 vs. 0.23±0.07), the right rectus gyrus (0.29±0.05 vs. 0.23±0.09), the middle left cingulate gyrus and its lateral surround (0.22±0.02 vs. 0.25±0.02), the left inferior occipital gyrus (0.32±0.05 vs. 0.35±0.05), the right cerebellar area 3 (0.24±0.04 vs. 0.26±0.03), and the right cerebellar area 9 (0.22±0.09 vs. 0.13±0.13) were statistically different between the two groups (P<0.05). The differences in AUCs for degree centrality and nodal efficiency between the two groups were not statistically significant (P>0.05). Conclusions Compared with people with good spatial navigation ability, the topological properties of the brains of the ones with poor spatial navigation ability still conformed to the small-world network properties, but the connectivity between brain regions reduces compared with the good spatial navigation ability group, with a tendency to convert to random networks and a reduced or increased nodal clustering coefficient in some brain regions. Differences in functional brain network connectivity exist among people with different spatial navigation abilities.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content