west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "heart rate detection" 2 results
  • Research on adaptive pulse signal extraction algorithm based on fingertip video image

    In order to solve the saturation distortion phenomenon of R component in fingertip video image, this paper proposes an iterative threshold segmentation algorithm, which adaptively generates the region to be detected for the R component, and extracts the human pulse signal by calculating the gray mean value of the region to be detected. The original pulse signal has baseline drift and high frequency noise. Combining with the characteristics of pulse signal, a zero phase digital filter is designed to filter out noise interference. Fingertip video images are collected on different smartphones, and the region to be detected is extracted by the algorithm proposed in this paper. Considering that the fingertip’s pressure will be different during each measurement, this paper makes a comparative analysis of pulse signals extracted under different pressures. In order to verify the accuracy of the algorithm proposed in this paper in heart rate detection, a comparative experiment of heart rate detection was conducted. The results show that the algorithm proposed in this paper can accurately extract human heart rate information and has certain portability, which provides certain theoretical help for further development of physiological monitoring application on smartphone platform.

    Release date:2020-04-18 10:01 Export PDF Favorites Scan
  • A heart rate detection method for wearable electrocardiogram with the presence of motion interference

    The dynamic electrocardiogram (ECG) collected by wearable devices is often corrupted by motion interference due to human activities. The frequency of the interference and the frequency of the ECG signal overlap with each other, which distorts and deforms the ECG signal, and then affects the accuracy of heart rate detection. In this paper, a heart rate detection method that using coarse graining technique was proposed. First, the ECG signal was preprocessed to remove the baseline drift and the high-frequency interference. Second, the motion-related high amplitude interference exceeding the preset threshold was suppressed by signal compression method. Third, the signal was coarse-grained by adaptive peak dilation and waveform reconstruction. Heart rate was calculated based on the frequency spectrum obtained from fast Fourier transformation. The performance of the method was compared with a wavelet transform based QRS feature extraction algorithm using ECG collected from 30 volunteers at rest and in different motion states. The results showed that the correlation coefficient between the calculated heart rate and the standard heart rate was 0.999, which was higher than the result of the wavelet transform method (r = 0.971). The accuracy of the proposed method was significantly higher than the wavelet transform method in all states, including resting (99.95% vs. 99.14%, P < 0.01), walking (100% vs. 97.26%, P < 0.01) and running (100% vs. 90.89%, P < 0.01). The absolute error [0 (0, 1) vs. 1 (0, 1), P < 0.05] and relative error [0 (0, 0.59) vs. 0.52 (0, 0.72), P < 0.05] of the proposed method were significantly lower than the wavelet transform method during running state. The method presented in this paper shows high accuracy and strong anti-interference ability, and is potentially used in wearable devices to realize real-time continuous heart rate monitoring in daily activities and exercise conditions.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content