west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "histopathological image" 2 results
  • Prediction of gene mutation in lung cancer based on deep learning and histomorphology analysis

    Lung cancer is a most common malignant tumor of the lung and is the cancer with the highest morbidity and mortality worldwide. For patients with advanced non-small cell lung cancer who have undergone epidermal growth factor receptor (EGFR) gene mutations, targeted drugs can be used for targeted therapy. There are many methods for detecting EGFR gene mutations, but each method has its own advantages and disadvantages. This study aims to predict the risk of EGFR gene mutation by exploring the association between the histological features of the whole slides pathology of non-small cell lung cancer hematoxylin-eosin (HE) staining and the patient's EGFR mutant gene. The experimental results show that the area under the curve (AUC) of the EGFR gene mutation risk prediction model proposed in this paper reached 72.4% on the test set, and the accuracy rate was 70.8%, which reveals the close relationship between histomorphological features and EGFR gene mutations in the whole slides pathological images of non-small cell lung cancer. In this paper, the molecular phenotypes were analyzed from the scale of the whole slides pathological images, and the combination of pathology and molecular omics was used to establish the EGFR gene mutation risk prediction model, revealing the correlation between the whole slides pathological images and EGFR gene mutation risk. It could provide a promising research direction for this field.

    Release date:2020-04-18 10:01 Export PDF Favorites Scan
  • Automated grading of glioma based on density and atypia analysis in whole slide images

    Glioma is the most common malignant brain tumor and classification of low grade glioma (LGG) and high grade glioma (HGG) is an important reference of making decisions on patient treatment options and prognosis. This work is largely done manually by pathologist based on an examination of whole slide image (WSI), which is arduous and heavily dependent on doctors’ experience. In the World Health Organization (WHO) criteria, grade of glioma is closely related to hypercellularity, nuclear atypia and necrosis. Inspired by this, this paper designed and extracted cell density and atypia features to classify LGG and HGG. First, regions of interest (ROI) were located by analyzing cell density and global density features were extracted as well. Second, local density and atypia features were extracted in ROI. Third, balanced support vector machine (SVM) classifier was trained and tested using 10 selected features. The area under the curve (AUC) and accuracy (ACC) of 5-fold cross validation were 0.92 ± 0.01 and 0.82 ± 0.01 respectively. The results demonstrate that the proposed method of locating ROI is effective and the designed features of density and atypia can be used to predict glioma grade accurately, which can provide reliable basis for clinical diagnosis.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content