The purpose of this study is to compare the differences among neck muscle fatigue evaluation algorithms and to find a more effective algorithm which can provide a human factor quantitative evaluation method for neck muscle fatigue during bending over the desk. We collected surface electromyography signal of sternocleidomastoid muscle of 15 subjects using wireless physiotherapy Bio-Radio when they bent over the desk using memory pillows for 12 minutes. Five algorithms including mean power frequency, spectral moments ratio, discrete wavelet transform, fuzzy approximation entropy and the complexity algorithms were used to calculate the corresponding muscle fatigue index. The least squares method was used to calculate the corresponding coefficient of determination R2 and slope k of the linear regression of the muscle fatigue metric. The coefficient of determination R2 evaluates anti-interference ability of algorithms. The maximum vertical distance Lmax which is obtained by the Kolmogorov-Smirnov test for the slopes k evaluates the ability to distinguish fatigue of algorithms. The results indicate that in the aspect of anti-interference ability, the fuzzy approximation entropy has the largest R2 when using memory pillows with different heights. When the fuzzy approximate entropy is compared with average power frequency or the discrete wavelet transform, the differences are significant (P < 0.05). In terms of distinguishing the degree of fatigue, the approximate entropy is still the largest, with a maximum of 0.496 7. Fuzzy approximation entropy is superior to other algorithms in ability of anti-interference and distinguishing fatigue. Therefore, fuzzy approximation entropy can be used as a better evaluation algorithm in the evaluation of cervical muscle fatigue.
Brain-computer interface (BCI) is a revolutionizing human-computer Interaction, which is developing towards the direction of intelligent brain-computer interaction and brain-computer intelligent integration. However, the practical application of BCI is facing great challenges. The maturity of BCI technology has not yet reached the needs of users. The traditional design method of BCI needs to be improved. It is necessary to pay attention to BCI human factors engineering, which plays an important role in narrowing the gap between research and practical application, but it has not attracted enough attention and has not been specifically discussed in depth. Aiming at BCI human factors engineering, this article expounds the design requirements (from users), design ideas, objectives and methods, as well as evaluation indexes of BCI with the human-centred-design. BCI human factors engineering is expected to make BCI system design under different use conditions more in line with human characteristics, abilities and needs, improve the user satisfaction of BCI system, enhance the user experience of BCI system, improve the intelligence of BCI, and make BCI move towards practical application.