Objective To evaluate the clinical efficacy of two-stage retrograde hybrid repair for acute aortic dissection involving the aortic arch complicated with distal malperfusion syndrome. Methods From May 2019 to December 2022, the patients presented with acute aortic dissection involving the aortic arch complicated with distal malperfusion syndrome treated in the Department of Cardiovascular Surgery of West China Hospital, Sichuan University were enrolled. After preoperative evaluation, all patients underwent priority emergency interventional surgery to improve distal malperfusion, and then underwent two-stage hybrid surgery to repair proximal aortic lesions. The perioperative clinical and imaging data were retrospectively analyzed. Results Five patients were collected, including 4 males and 1 female, with a median age of 58 years. The main manifestations were lower limb ischemia and renal insufficiency in 3 patients, and poor intestinal perfusion in 2 patients. All patients were given priority to interventional surgery to implant graft stents or bare stents and necessary branch artery intervention, and then successfully performed two-stage hybrid surgery, including type Ⅰhybrid surgery for 2 patients, type Ⅱ hybrid surgery for 1 patient and type Ⅲ hybrid surgery for the other 2 patients, with a success rate of 100.0%. All patients were discharged successfully, and the function of the organs with poor perfusion returned to normal. Only 1 patient recovered to grade 4 muscle strength of the diseased lower limbs upon discharge. No adverse events such as amputation, exploratory laparotomy and intestinal resection or long-term hemodialysis occurred. Conclusion The application of two-stage retrograde hybrid repair in the surgical treatment of acute aortic dissection involving the aortic arch complicated with distal malperfusion syndrome is safe and effective, and is helpful to improve the perioperative survival rate, and clinical outcomes of such patients.
Surgical intervention for chronic thoracoabdominal aortic dissecting aneurysms (cTAADA) is regarded as one of the most challenging procedures in the field of vascular surgery. For nearly six decades, open repair predominantly utilizing prosthetic grafts has been the treatment of choice for cTAADA. With advances in minimally invasive endovascular technologies, two novel surgical approaches have emerged: total endovascular stent-graft repair and hybrid procedures combining retrograde debranching of visceral arteries with endovascular stent-graft repair (abbreviated as hybrid procedure). Although total endovascular stent-graft repair offers reduced trauma and quicker recovery, limitations persist in clinical application due to hostile anatomical requirements of the aorta, high costs, and the lack of universally available stent-graft products. Hybrid repair, integrating the minimally invasive ethos of endovascular repair with visceral artery debranching techniques, has increasingly become a significant surgical modality for managing thoracoabdominal aneurysms, especially in cases unsuitable for open surgery or total endovascular treatment due to anatomical constraints such as aortic tortuosity or narrow true lumens in dissections. Recent enhancements in hybrid surgical approaches include ongoing optimization of visceral artery reconstruction strategies based on hemodynamic analyses, and exploration of the comparative benefits of staged versus concurrent surgical interventions.