Objective To study the effect of hypoxia on the prol iferation of hBMSCs and human placental decidua basal is-MSCs (hPDB-MSCs), and to provide the theoretical basis for discovering the new seed cells source for tissue engineering. Methods Density gradient centrifugation method was adopted to isolate and culture hBMSCs and hPDB-MSCs,flow cytometry (FCM) was appl ied to detect cell surface marker. After establ ishing the experimental model of CoC12 chemical hypoxia, MTT method was appl ied to evaluate the prol iferation of hBMSCs and hPDB-MSCs at different time points (6, 12, 24, 48, 72, 96 hours) with various CoC12 concentration (0, 50, 75, 100, 125, 150, 175, 200 μmol/L). Results FCM analysis revealed that hPDB-MSCs and hBMSCs expressed CD9, CD29, CD44, CD105, CD106 and human leucocyte antigen ABC (HLA-ABC), but both were absent for CD34, CD40L and HLA-DR. Compared with hBMSCs, hPDB-MSCs expressed stage-specific embryonic antigen 1 (SSEA-1), SSEA-3, SSEA-4, TRA-1-60 and TRA-1-81 better. The prol iferations of hPDB-MSCs and hBMSCs were inhibited within the first 12 hours under hypoxia condition, but promoted after 12 hours of hypoxia. Compared with the control group, the hBMSCs were remarkably prol iferated 24 hours after hypoxia with CoC12 concentration of 150 µmol/L (P lt; 0.05), while hPDB-MSCs were significantly prol iferated 12 hours after hypoxia with CoC12 concentration of 75 µmol/L (P lt; 0.05). Conclusion Compared with hBMSCs, hPDB-MSCs express more specific surface antigens of embryonic stem cells and are more sensitive to the prol iferation effects of chemical hypoxia, indicating it may be a new seed cells source for tissue engineering.
Objective To investigate relationship between hypoxia microenvironment and occurrence and development of hepatocellular carcinoma (HCC). Method The relevant literatures on researches of the relationship between the hypoxic microenvironment and the HCC were review and analyzed. Results The hypoxia microenvironment played an important role in inducing the drug resistance and angiogenesis of the HCC cells, and it was an important factor of affecting the ability of tumor metabolism, invasion, and migration. The hypoxia microenvironment could up-regulate the expression of hypoxia-inducible factors (HIFs) and promote its transcriptional activity, promote the expression of the vascular endothelial growth factor gene, and regulate the neovascularization in the tumor. Among them, the HIF-1α played a major role in regulating the angiogenesis, immune escape, tumor invasion and metastasis-related gene expression, participating in the glycolysis, regulating lysyl oxidase 2 and thus regulated epithelial-mesenchymal transition, then promoted the invasion and metastasis of the HCC; HIF-2α was a key regulator of the malignant phenotype involving in the cell proliferation, angiogenesis, apoptosis, metabolism, metastasis, and resistance to chemotherapy. The hypoxia microenvironment posed some difficulties for the treatment of HCC, but it was also a potential therapeutic breakthrough. Conclusion Hypoxia microenvironment can promote invasion and metastasis of HCC through various mechanisms, which provides new targets and strategies for clinical treatment of HCC.
Objective To compare the effects of oxygen therapy and local pressurization in alleviating plateau hypoxia at high altitude. Methods Forty-five healthy male soldiers were investigated at an altitude of 3992 meters. The subjects were randomly divided into three groups, ie. an oxygen inhalation group, a single-soldier oxygen increasing respirator ( SOIR) group and a BiPAP group. The oxygen inhalation group was treated with oxygen inhalation via nasal catheter at 2 L/ min. SOIR was used to assist breath in the SOIR group. The BiPAP group were treated with bi-level positive airway pressure ventilation, with IPAP of 10 cm H2O and EPAP of 4 cmH2 O. PaO2, PaCO2, SpO2 and heart rate were measured before and 30 minutes after the treatment. Results There were continuous increase of PaO2 from ( 53. 30 ±4. 88) mm Hg to( 58. 58 ±5. 05) mm Hg and ( 54. 43 ±3. 01) mm Hg to ( 91. 36 ±10. 99) mm Hg after BiPAP ventilation and oxygen inhalation, respectively ( both P lt; 0. 01) . However, the PaO2 of the SOIR group was decreased from( 56. 00 ±5. 75) mm Hg to ( 50. 82 ±5. 40) mm Hg( P lt; 0. 05 ) . In the other hand, the PaCO2 was increased from ( 30. 41 ±1. 51) mmHg to ( 32. 56 ±2. 98) mm Hg in the oxygen inhalation group ( P lt; 0. 05) , declined from( 28. 74 ±2. 91) mm Hg to ( 25. 82 ±4. 35) mm Hg in the BiPAP group( P lt;0. 05) ,and didn’t change significantly from( 28. 65 ±2. 78) mm Hg to ( 29. 75 ±3. 89) mmHg in the SOIR group ( P gt;0. 05) . Conclusions Both BiPAP ventilation and oxygen inhalation can alleviate plateau hypoxia by improving PaO2 at 3992 meter altitude while SOIR has no significant effect.
Objective To compare the effects of hypoxia-inducible drugs using deferoxamine (DFO) and accordion technique (AT) on activating the hypoxia-inducible factor 1α (HIF-1α)/vascular endothelial growth factor (VEGF) signaling pathway to promote bone regeneration and remodelling during consolidation phase of distraction osteogenesis (DO). Methods Forty-five specific-pathogen-free adult male Sprague-Dawley (SD) rats were randomly divided into the control group, DFO group, and AT group, with 15 rats in each group. All rats underwent osteotomy to establish a right femur DO model. Then, continuous distraction was started for 10 days after 5 days of latency in each group. During the consolidation phase after distraction, no intervention was performed in the control group; DFO was locally perfused into the distraction area in the DFO group starting at the 3rd week of consolidation phase; cyclic stress stimulation was given in the AT group starting at the 3rd week of consolidation phase. The general condition of rats in each group was observed. X-ray films were conducted at the end of the distraction phase and at the 2nd, 4th, and 6th weeks of the consolidation phase to observe the calcification in the distraction area. At the 4th and 6th weeks of the consolidation phase, peripheral blood was taken for ELISA detection (HIF-1α, VEGF, CD31, and Osterix), femoral specimens were harvested for gross observation, histological staining (HE staining), and immunohistochemical staining [HIF-1α, VEGF, osteopontin (OPN), osteocalcin (OCN)]. At the 6th week of the consolidation phase, Micro-CT was used to observe the new bone mineral density (BMD), bone volume/tissue volume (BV/TV), trabecular separation (Tb.Sp), trabecular number (Tb.N), and trabecular thickness (Tb.Th) in the distraction area, and biomechanical test (ultimate load, elastic modulus, energy to failure, and stiffness) to detect bone regeneration in the distraction area. Results The rats in all groups survived until the termination of the experiment. ELISA showed that the contents of HIF-1α, VEGF, CD31, and Osterix in the serum of the AT group were significantly higher than those of the DFO group and control group at the 4th and 6th weeks of the consolidation phase (P<0.05). General observation, X-ray films, Micro-CT, and biomechanical test showed that bone formation in the femoral distraction area was significantly better in the DFO group and AT group than in the control group, and complete recanalization of the medullary cavity was achieved in the AT group, and BMD, BV/TV, Tb.Sp, Tb.N, and Tb.Th, as well as ultimate load, elastic modulus, energy to failure, and stiffness in the distraction area, were better in the AT group than in the DFO group and control group, and the differences were significant (P<0.05). HE staining showed that trabecular bone formation and maturation in the distraction area were better in the AT group than in the DFO group and control group. Immunohistochemical staining showed that at the 4th week of consolidation phase, the expression levels of HIF-1α, VEGF, OCN, and OPN in the distraction area of the AT group were significantly higher than those of the DFO group and control group (P<0.05); however, at 6th week of consolidation phase, the above indicators were lower in the AT group than in the DFO group and control group, but there was no significant difference between groups (P>0.05). Conclusion Both continuous local perfusion of DFO in the distraction area and AT during the consolidation phase can activate the HIF-1α/VEGF signaling pathway. However, AT is more effective than local perfusion of DFO in promoting the process of angiogenesis, osteogenesis, and bone remodelling.
Objective To investigate the effect of hypoxia on expressions of erythropoietin(EPO)mRNA and protein in retinal Muuml;ller cells cultured in vitro. Methods Retina tissues from the new-born Wistar rats were dissected into cell suspension after digested by pancreatin.Muuml;ller cells were separated and purified by mechanical concussion and blowing and striking method.The expression of EPO mRNA and protein under the condition of hypoxia was detected by semi-quantitative reverse transcriptase(RT)-polymerase chain reaction(PCR)and immunocytochemical method. Results Retinal Muuml;ller cells were cultured successfully,95% of which were positively stained by glial fibrillary acidic protein(GFAP).Positively stained EPO protein was located in the cytoplasm and protuberance.The expression of EPO mRNA and protein was faint in the normal retinal Muuml;ller cells,but increased obviously and time-dependently after hypoxia. Conclusion Expression of EPO mRNA and protein increases in Muuml;ller cells after hypoxia,which may be one of the protective factors for the nerves in anoxic retinopathy. (Chin J Ocul Fundus Dis, 2006, 22: 196-199)
ObjectiveTo explore the mechanism of renal tubular epithelial cell apoptosis induced by endoplasmic reticulum stress in rats with intermittent hypoxia (IH) and the intervention effect of losartan.MethodsSixty SPF grade healthy male SD rats were randomly divided into four groups (15 rats in each group), namely as group A (control group), group B (IH group), group C (IH+losartan group), and group D (IH+saline group). The group C and D were intraperitoneally injected with losartan 30 mg/kg and the same dose of saline 30 minutes daily before the experiment, and then the group B, C and D were placed in the intermittent hypoxia chamber. After 6 weeks of modeling, serum of the rats was sampled to detect the renal function. Hematoxylin-eosin staining was used to observe histomorphological changes of the kidney; transmission electron microscopy was used to observe ultrastructural changes of the kidney; TUNEL was used to detect apoptotic index of the renal tubular epithelial cells; and RT-PCR method was used to detect expressions of caspase-12, JNK and CHOP mRNA in the kidney.ResultsThe differences of renal function among these four groups were statistically significant (all P<0.05). Hematoxylin-eosin staining and transmission electron microscopy showed the histomorphological and ultrastructural changes of the kidneys in group B, C and D compared with group A, and the damages in group B and D were more significant. TUNEL results showed that the apoptotic index of renal tubular epithelial cells in group B and D was significantly higher than that in group A (P<0.01), while that in group C was significantly lower than that in group B and D (all P<0.01). RT-PCR results showed that caspase-12, JNK and CHOP mRNA expressions were significantly higher in group B and D than those in group A (all P<0.01); caspase-12 mRNA expression was significantly lower in group C than that in group B and D (P<0.01; P<0.05); and CHOP mRNA expression was significantly lower in group C than that in group B and D (all P<0.01).ConclusionsIH may induce apoptosis of renal tubular epithelial cells by activating endoplasmic reticulum stress through caspase-12, JNK and CHOP. Losartan has protective effects on the kidney of rats with intermittent hypoxia. Its mechanism may be related to the inhibition of apoptotic pathways mediated by endoplasmic reticulum stress.
Objective To investigate the changes in mitochondrial morphology, structure and function in rats with severe intermittent hypoxia, as well as the effects of intermittent hypoxia and its severity on cognitive function. Methods A total of 18 rats were selected to construct a model of severe intermittent hypoxia, which were divided into a normal control group, an intermittent air control group, and a 5% intermittent hypoxia group for 8 weeks, with 6 rats in each group. The structural and functional changes of mitochondria in the hippocampal CA1 region were observed. A total of 30 rats were randomly divided into 5 groups: a normal control group, an intermittent air control group, a 5% intermittent hypoxia 4-week group, a 5% intermittent hypoxia 6-week group, and a 5% intermittent hypoxia 8-week group, with 6 rats in each group. The cognitive function of the rats in each group was evaluated by Morris water maze experiment. Results In the mitochondria of the hippocampal CA1 region of severely intermittent hypoxic rats, bilayer membranes or multilayer membranes were visible, the mitochondria were swollen, cristae were broken and vacuolated, and their respiratory function was significantly weakened, the membrane permeability was increased, and the membrane potential was reduced. In the Morris water maze, there was no significant difference in swimming speed between the rats. With the prolongation of intermittent hypoxia action time, the latency of finding the hidden platform in each group of rats increased significantly, and the residence time of the target quadrant decreased significantly. Conclusions Mitochondrial structure in the hippocampal CA1 region of the rat brain is destroyed during severe intermittent hypoxia, and dysfunction and cognitive impairment occur. With the prolongation of intermittent hypoxic injury, the degree of cognitive impairment worsens.
ObjectiveTo study the changes of body weight, body length, tail length, femur length, bone mineral density, serum osteocalcin content and apoptosis of bone cells in rats under intermittent hypoxia condition, so as to explore the effects of intermittent hypoxia on bone growth.MethodsForty healthy male SD rats aged 3 to 4 weeks were selected and divided into 2 groups, 20 rats in each group. Group A: normoxic control group (normal diet and normoxic environment); group B: intermittent hypoxia group (normal feeding and was put into the hypoxic chamber to establish intermittent hypoxia environment), 8 hours a day (09:00 to 17:00), 4 weeks of modeling. The body weight, body length and tail length of the two groups were measured in every morning. At the end of 4 weeks after anesthesia, the body weight, body length, tail length and right femur length were measured. The body weight growth rate, body length growth rate and tail length growth rate were calculated. Blood samples were collected from the abdominal aortic, and the content of serum osteocalcin was measured by enzyme linked immunosorbent assay; the right femur bone mineral density was measured by automatic dual-energy X-ray bone densitometer; the apoptosis of bone cells was detected by immunofluorescence staining+TUNEL.ResultsThe body weight growth rate, body length growth rate, tail length growth rate and right femur length in group A were all higher than those in group B (P<0.05); serum osteocalcin content in group A was higher than that in group B (P<0.05); bone mineral density in group A was higher than that in group B (P<0.05); the apoptotic index of bone cells in group B was higher than that in group A (P<0.05). Pearson correlation analysis showed that the serum osteocalcin content was significantly positively correlated with the growth rate of body length, femoral length and bone mineral density (P< 0.01).ConclusionIntermittent hypoxia could reduce osteocalcin secretion, inhibit bone growth and sclerosis, and induce osteocyte apoptosis, thus delay the bone growth.
Objective To study the correlation between smoking and obstructive sleep apnea (OSA). Methods A total of 454 patients from October 2015 to July 2021 were retrospectively collected for nocturnal polysomnography monitoring (no less than 7 hours). The patients were divided into an OSA group (n=405) and a control group (n=49, patients with primary snoring) according to the results of polysomnography monitoring. According to the apnea hypopnea index (AHI) and the lowest oxygen saturation during sleep, the severity of OSA was classified into a mild to moderate group (5 times/h ≤ AHI<30 times/h) and a severe group (AHI ≥30 times/h). The patients were inquired about their smoking history, then the patients diagnosed with OSA were further divided into a smoking group, a smoking cessation group, and a non-smoking group based on their smoking history. Results The smoking rate of the patients in the OSA group was higher than that in the control group (50.9% vs. 32.7%, P<0.05), while the smoking rate in the severe OSA group was higher than that in the mild to moderate group (55.7% vs. 39.8%, P<0.05). Smoking was positively correlated with AHI, cumulative percentages of time spent at oxygen saturation below 90% (Ts90%), and total apnea time (r value was 0.196, 0.197, 0.163, P<0.05), while negatively correlated with the lowest and average SpO2 during sleep (r value was –0.202, –0.214, P<0.05). The logistic regression analysis with severe OSA as the outcome variable showed that smoking (OR=1.781) and obesity (OR=1.930) were independent risk factors of severe OSA (P<0.05). The comparison between groups of the OSA patients with different smoking states showed that the proportion of severe OSA, AHI, Ts90%, and total apnea time (77.8%, 53.55 times/h, 18.35%, and 111.70 minutes, respectively) of the smoking group were higher than those of the non-smoking group (62.8%, 40.20 times/h, 8.40%, and 76.20 minutes, respectively, P<0.05). The lowest SpO2 and average SpO2 during sleep (69.50%, 93.00%, respectively) of the smoking group were lower than those of the non-smoking group (75.00%, 94.00%, respectively, both P<0.05). The average SpO2 of the smoking cessation group was higher than that of the smoking group (94.00% vs. 93.00%, P<0.05), and the Ts90% of the smoking cessation group was lower than that of the smoking group (6.75% vs. 18.35%, P<0.05). Conclusions Smoking significantly affects the degree of sleep-disordered breathing and may be an independent risk factor for severe OSA. Smoking can exacerbate the severity of OSA and the degree of hypoxia, while smoking cessation can improve the degree of hypoxia in OSA patients.
ObjectiveTo investigate the effect of hydrogel from acellular porcine adipose tissue (HAPA) on the survival of transplanted adipose tissue.MethodsFor in vitro study, adipose tissue and HAPA-adipose tissue complex were cultured in normoxia and hypoxia atmospheres for 24 and 72 hours. TUNEL and Perilipin immunofluorescence staining were performed to observe the effect of HAPA on apoptosis and survival of adipocities. For in vivo study, 42 healthy male nude mice (4-6 weeks old) weighing 15-18 g were randomly divided into adipose group (group A), 10%HAPA group (group B), 20%HAPA group (group C), 30%HAPA group (group D), 40%HAPA group (group E), and 50%HAPA group (group F) according to different HAPA/adipose tissue volume ratio (n=7). For each group, 1 mL adipose tissue or HAPA-adipose tissue complex was injected subcutaneously into the dorsum of the nude mice. At 4 weeks after transplantation, 7 nude mice in each group were sacrificed and grafts were harvested, gross observation, volume measurement, ultrasound examination, and histologic staining (HE staining, CD31 and Perilipin immunofluorescence stainings) were applied.ResultsHypoxia showed a tendency of promoting adipose tissue necrosis and apoptosis, while HAPA exhibited an obvious effect of inhibiting cell apoptosis in vitro study (P<0.05). For in vivo study, grafts of all groups had intact fibrocapsule. No obvious signs of infection and necrosis were observed at 4 weeks. Volume shrinkage was observed in all groups, however, the groups A-D had significantly higher volume retention rate than groups E and F (P<0.05). Ultrasound examination showed that there were no significant difference in the number and volume of liquify area of the grafts in each group (P>0.05). With the increase of HAPA’s volume ratio, HE staining proved an improved fat integrity while a gradually decreased vacuoles and fibrosis. CD31 immunohistochemical staining showed that the number of neo-vascularisation in groups E and F were significantly higher than those in groups A-D (P<0.05). Perilipin immunofluorescence staining showed that with the increase of HAPA volume ratio, the number of living adipocytes increased gradually, and more new adipocytes could be seen in the field of vision.ConclusionAs the volume ratio of HAPA gradually increased, the survival of transplanted adipose tissue also increased, but the volume retention rate decreased gradually. 30%HAPA was considered the relative optimal volume ratio for its superior adipose tissue survival and volume retation rate.