west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "immune microenvironment" 2 results
  • Research progress of single-cell RNA sequencing in the immune microenvironment analysis of non-small cell lung cancer

    Non-small cell lung cancer (NSCLC) is one of the most common types of cancer in the world and is an important cause for cancer death. Although the application of immunotherapy in recent years has greatly improved the prognosis of NSCLC, there are still huge challenges in the treatment of NSCLC. The immune microenvironment plays an important role in the process of NSCLC development, infiltration and metastasis, and they can interact and influence each other, forming a vicious circle. Notably, single-cell RNA sequencing enables high-resolution analysis of individual cells and is of great value in revealing cell types, cell evolution trajectories, molecular mechanisms of cell differentiation, and intercellular regulation within the immune microenvironment. Single-cell RNA sequencing is expected to uncover more promising immunotherapies. This article reviews the important researches and latest achievements of single-cell RNA sequencing in the immune microenvironment of NSCLC, and aims to explore the significance of applying single-cell RNA sequencing to analyze the immune microenvironment of NSCLC.

    Release date: Export PDF Favorites Scan
  • Construction and validation of circadian rhythm genes-related prognostic risk model for lung adenocarcinoma

    ObjectiveTo explore the relationship between circadian rhythm genes and the occurrence, development, prognosis, and tumor microenvironment (TME) of lung adenocarcinoma (LUAD). MethodsThe Cancer Genome Atlas data were used to evaluate the expression, copy number variation, and somatic mutation frequency of circadian gene sets in LUAD. GO, KEGG, and GSEA enrichment analyses were used to explore the potential mechanisms by which circadian rhythm genes affected LUAD progression. Cox analysis, LASSO regression, support vector machine recursive feature elimination, and random forest screened circadian genes and established prognostic models, and on this basis constructed nomogram to predict patients' 1-, 3-, and 5-year survival rates. Kaplan-Meier survival curves, receiver operating characteristic (ROC) curves, and time-dependent ROC curves were drawn to evaluate the predictive ability of the model, and the external dataset of GEO further verified the prognostic value of the prediction model. In addition, we evaluated the association of the prognostic model with immune cells and immune checkpoint genes. Finally, single cell RNA sequencing (scRNA-seq) analysis was used to explore the molecular characteristics between prognostically relevant circadian genes and different immune cell populations in TME. ResultsDifferentially expressed circadian rhythm genes were mainly enriched in biological processes related to cGMP-PKG signaling pathway, lipid and atherosclerosis, and JAK-STAT signaling pathway. Seven circadian rhythm genes: LGR4, CDK1, KLF10, ARNTL2, RORA, NPAS2, PTGDS were screened out, and a RiskScore model was established. According to the median RiskScore, samples were divided into a high-risk group and a low-risk group. Compared with patients in the low-risk group, patients in the high-risk group showed a poored prognosis (P<0.001). Immunological characterization analysis showed that there were differences in the infiltration of multiple immune cells between the low-risk group and high-risk group. Most immune checkpoint genes had higher expression levels in the high-risk group than those in the low-risk group, and RiskScore was positively correlated with the expression of CD276, TNFSF4, PDCD1LG2, CD274, and TNFRSF9, and negatively correlated with the expression of CD40LG and TNFSF15. Through scRNA-seq analysis, RORA and KLF10 were mainly expressed in natural killer cells. ConclusionThe prognostic model based on seven feature circadian rhythm genes has certain predictive value for predicting survival of LUAD patients. Dysregulated expression of circadian genes may regulate the occurrence, progression as well as prognosis of LUAD through affecting TME, which provides a possible direction for finding potential strategies for treating LUAD from the perspective of mechanism by which circadian disorder affects immune cells.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content