Objective To evaluate the efficacy, safety and economical values of nucleic acid/nueleotides for clinical nutritional support and immune treatment. Methods The following electronic databases were searched: Chinese Biomedicine database (CBM), MEDLINE, EMBASE and SCI. Data were extracted by two reviewers. Applied RevMan 4.1 for statistical analyse. Results Forty-six randomized controlled trials were identified, involving nucleic acids/nucleotides for clinical nutritional support, infant feed, immune treatment. Eighteen randomized trials comparing the use of immunonutrition which comprises nucleotides with standard enteral nutrition in surgical and critical ill patients. Combined analysis directed that immunonutrition therapy decrease infection events, length of hospitalization and the cost. Only one trial reported the effects of adding nucleotides to breast milk substitute, but there is no valuable results for clinical practice. Twenty-seven low quality trials compared the use of "immune RNA (iRNA)" with standard methods in hepatitis, carcinoma and burn patients, combined analysis directed that there are not valid evidences to confirm the value of iRNA. Conclusions Immunonutrition may decrease infection rates, length of hospitalisation and cost in surgery and critical ill patients, but we can not affirm the role of the nucleotides in irmnunonutrition. No evidences support the point of adding nucteotides in breast milk substitute. Also, we can not affirm the role of iRNA in clinical immune regulation treatment. There are no available evidences in nucleic acids for caducity prevention and improvement of aging people’s health. Consequently, we advice Chinese health officials to enhance the management for applying "nucleic acids nutrients".
Objective To summarize research progress of the mechanism of natural killer cells (NK cells) acted in regulating the T cell immunity in chronic infectious disease. Method Literatures about recent studies concerning how NK cells act as a regulator for T cells in chronic infectious disease were reviewed according to the results obtained from PubMed, Embase, CNKI, CBM, and Wanfang databases. Results NK cells that acted as regulators of T cell immunity could affect T cell immune responses through influencing antigen presentation, secreting cytokine, and presenting lytic activities, thus playing an important role in the immunological therapy of chronic infectious diseases. Conclusion NK cells are critical for T cell immune regulation, which could provide noval strategies for immunological therapy of chronic infectious disease, transplantation-related immune rejection, and autoimmune disease.
ObjectiveTo investigate the effects of three-dimensional (3D) printed Ti6Al4V-4Cu alloy on inflammation and osteogenic gene expression in mouse bone marrow mesenchymal stem cells (BMSCs) and mouse mononuclear macrophage line RAW264.7.MethodsTi6Al4V and Ti6Al4V-4Cu alloys were prepared by selective laser melting, and the extracts of the two materials were prepared according to the biological evaluation standard of medical devices. The effects of two kinds of extracts on the proliferation of mouse BMSCs and mouse RAW264.7 cells were detected by cell counting kit 8 method. After co-cultured with mouse BMSCs for 3 days, the expression of osteogenesis- related genes [collagen type Ⅰ (Col-Ⅰ), alkaline phosphatase (ALP), Runx family transcription factor 2 (Runx-2), osteoprotegerin (OPG), and osteopontin (OPN)] were detected by real-time fluorescence quantitative PCR. After co-cultured with mouse RAW264.7 cells for 1 day, the expressions of inflammation-related genes [interleukin 4 (IL-4) and nitric oxide synthase 2 (iNOS)] were detected by real-time fluorescence quantitative PCR, and the supernatants of the two groups were collected to detect the secretion of vascular endothelial growth factor a (VEGF-a) and bone morphogenetic protein 2 (BMP-2) by ELISA. The osteogenic conditioned medium were prepared with the supernatants of the two groups and co-cultured with BMSCs for 3 days. The expressions of osteogenesis-related genes (Col-Ⅰ, ALP, Runx-2, OPG, and OPN) were detected by real-time fluorescence quantitative PCR.ResultsCompared with Ti6Al4V alloy extract, Ti6Al4V-4Cu alloy extract had no obvious effect on the proliferation of BMSCs and RAW264.7 cells, but it could promote the expression of OPG mRNA in BMSCs, reduce the expression of iNOS mRNA in RAW264.7 cells, and promote the expression of IL-4 mRNA. It could also promote the secretions of VEGF-a and BMP-2 in RAW264.7 cells. Ti6Al4V-4Cu osteogenic conditioned medium could promote the expressions of Col-Ⅰ, ALP, Runx-2, OPG, and OPN mRNAs in BMSCs. The differences were all significant (P<0.05).Conclusion3D printed Ti6Al4V-4Cu alloy can promote RAW264.7 cells to secret VEGF-a and BMP-2 by releasing copper ions, thus promoting osteogenesis through bone immune regulation, which lays a theoretical foundation for the application of metal prosthesis.
With the continuous progress of materials science and biology, the significance of biomaterials with dual characteristics of materials science and biology is keeping on increasing. Nowadays, more and more biomaterials are being used in tissue engineering, pharmaceutical engineering and regenerative medicine. In repairing bone defects caused by trauma, tumor invasion, congenital malformation and other factors, a variety of biomaterials have emerged with different characteristics, such as surface charge, surface wettability, surface composition, immune regulation and so on, leading to significant differences in repair effects. This paper mainly discusses the influence of surface charge of biomaterials on bone formation and the methods of introducing surface charge, aiming to promote bone formation by changing the charge distribution on the surface of the biomaterials to serve the clinical treatment better.
Objective To explore the role of high endothelial venule (HEV) in chronic obstructive pulmonary disease (COPD) at the single cell level. Methods A total of 219257 cells from the lung tissues of 18 COPD patients and 28 healthy controls in the GEO public database (GSE136831) were used to analyze the relationship between HEV with T lymphocytes, B lymphocytes, and dendritic cells. Results Endothelial cells were extracted using single cell analysis technique, and sorting out venous endothelium, CCL14, IGFBP7, POSTN were used as marker genes for HEV endothelial cells. The ratio of HEV endothelial cells was also identified as up-regulated expression in COPD. The function of the differential genes of HEV endothelial cells was analyzed, suggesting the presence of immune regulation. By trajectory analysis, it was suggested that the differential genes of HEV endothelial cells were enriched for extracellular matrix deposition in late development. Finally, by receptor-ligand pairing, it was suggested that HEV endothelial cells was recruited through a series of ligands with T lymphocytes, B lymphocytes, and dendritic cells. Conclusions HEV endothelial cells are elevated in COPD and have an immunomodulatory role by secreting a series of ligands after recruiting T lymphocytes, B lymphocytes as well as dendritic cells for immune action. HEV may be a potential target for the study of COPD therapy.
ObjectiveTo summarize the characteristics of the occurrence and development of osteonecrosis of the femoral head (ONFH), and to review the important regulatory role of immune cells in the progression of ONFH. MethodsThe domestic and foreign literature on the immune regulation of ONFH was reviewed, and the relationship between immune cells and the occurrence and development of ONFH was analyzed. ResultsThe ONFH region has a chronic inflammatory reaction and an imbalance between osteoblast and osteoclast, while innate immune cells such as macrophages, neutrophils, dendritic cells, and immune effector cells such as T cells and B cells are closely related to the maintenance of bone homeostasis. ConclusionImmunotherapy targeting the immune cells in the ONFH region and the key factors and proteins in their regulatory pathways may be a feasible method to delay the occurrence, development, and even reverse the pathology of ONFH.
Titanium and its alloys have become one of the most widely used implant materials in orthopedics because of their excellent mechanical properties and biocompatibility. Implant-associated infection is the main reason of failure of orthopedic implant surgery. The anti-infection modification of implant surface has received more attention in the field of infection prevention and developed rapidly. This article focuses on the current research status of simple anti-infection surface modifications that make titanium implants possess anti-adhesion, bactericidal activity or antibacterial membrane activity, as well as the research progress of composite functional surface modifications that promote bone integration, osteogenesis or immunomodulatory effects on the basis of anti-infection, so as to provide references for the construction of orthopedic implants with composite functions.