Feature extraction is a very crucial step in P300-based brain-computer interface (BCI) and independent component analysis (ICA) is a suitable P300 feature extraction method. But at present the convergence performance of the general ICA iteration methods are not very satisfactory. In this paper, a method based on quantum particle swarm optimizer (QPSO) algorithm and ICA technique is put forward for P300 extraction. In this method, quantum computing is used to impel ICA iteration to globally converge faster. It achieved the purpose of extracting P300 rapidly and efficiently. The method was tested on two public datasets of BCI Competition Ⅱ and Ⅲ, and a simple linear classifier was employed to classify the extracted P300 features. The recognition accuracy reached 94.4% with 15 times averaged. The results showed that the proposed method could extract P300 rapidly and the extraction effect did not reduce. It provides an experimental basis for further study of real-time BCI system.
It is generally considered that various regulatory activities between genes are contained in the gene expression datasets. Therefore, the underlying gene regulatory relationship and the biologically useful information can be found by modeling the gene regulatory network from the gene expression data. In our study, two unsupervised matrix factorization methods, independent component analysis (ICA) and nonnegative matrix factorization (NMF), were proposed to identify significant genes and model the regulatory network using the microarray gene expression data of Alzheimer's disease (AD). By bio-molecular analyzing of the pathways, the differences between ICA and NMF have been explored and the fact, which the inflammatory reaction is one of the main pathological mechanisms of AD, is also emphasized. It was demonstrated that our study gave a novel and valuable method for the research of early detection and pathological mechanism, biomarkers' findings of AD.
In the present investigation, we studied four methods of blind source separation/independent component analysis (BSS/ICA), AMUSE, SOBI, JADE, and FastICA. We did the feature extraction of electroencephalogram (EEG) signals of brain computer interface (BCI) for classifying spontaneous mental activities, which contained four mental tasks including imagination of left hand, right hand, foot and tongue movement. Different methods of extract physiological components were studied and achieved good performance. Then, three combined methods of SOBI and FastICA for extraction of EEG features of motor imagery were proposed. The results showed that combining of SOBI and ICA could not only reduce various artifacts and noise but also localize useful source and improve accuracy of BCI. It would improve further study of physiological mechanisms of motor imagery.
The purpose of using brain-computer interface (BCI) is to build a bridge between brain and computer for the disable persons, in order to help them to communicate with the outside world. Electroencephalography (EEG) has low signal to noise ratio (SNR), and there exist some problems in the traditional methods for the feature extraction of EEG, such as low classification accuracy, lack of spatial information and huge amounts of features. To solve these problems, we proposed a new method based on time domain, frequency domain and space domain. In this study, independent component analysis (ICA) and wavelet transform were used to extract the temporal, spectral and spatial features from the original EEG signals, and then the extracted features were classified with the method combined support vector machine (SVM) with genetic algorithm (GA). The proposed method displayed a better classification performance, and made the mean accuracy of the Graz datasets in the BCI Competitions of 2003 reach 96%. The classification results showed that the proposed method with the three domains could effectively overcome the drawbacks of the traditional methods based solely on time-frequency domain when the EEG signals were used to describe the characteristics of the brain electrical signals.
We in the present research proposed a classification method that applied infomax independent component analysis (ICA) to respectively extract single modality features of structural magnetic resonance imaging (sMRI) and positron emission tomography (PET). And then we combined these two features by using a method of weight combination. We found that the present method was able to improve the accurate diagnosis of Alzheimer's disease (AD) and mild cognitive impairment (MCI). Compared AD to healthy controls (HC): the study achieved a classification accuracy of 93.75%, with a sensitivity of 100% and a specificity of 87.64%. Compared MCI to HC: classification accuracy was 89.35%, with a sensitivity of 81.85% and a specificity of 99.36%. The experimental results showed that the bi-modality method performed better than the individual modality in comparison to classification accuracy.
All the collected original electroencephalograph (EEG) signals were the subjects to low-frequency and spike noise. According to this fact, we in this study performed denoising based on the combination of wavelet transform and independent component analysis (ICA). Then we used three characteristic parameters, complexity, approximate entropy and wavelet entropy values, to calculate the preprocessed EEG data. We then made a distinguishing judge on the EEG state by the state change rate of the characteristic parameters. Through the anesthesia and non-anesthesia EEG data processing results showed that each of the three state change rates could reach about 50.5%, 21.6%, 19.5%, respectively, in which the performance of wavelet entropy was the highest. All of them could be used as a foundation in the quantified research of depth of anesthesia based on EEG analysis.
The study of brain information flow is of great significance to understand brain function in the field of neuroscience. The Granger causality is widely used functional connectivity analysis using multivariate autoregressive model based on the predicted mechanism. High resolution electroencephalogram (EEG) signals of ten healthy subjects were collected with a visual selective attention task. Firstly, independent component analysis was used to extract three spatially independent components of the occipital, parietal, and frontal cortices. Secondly, the Granger causal connectivity was computed between these three regions based on the Granger causality method and then independent sample t-test and bootstrap were used to test the significance of connections. The results showed that Granger causal connectivity existed from frontal to occipital and from parietal to occipital in attentional condition, while causal connectivity from frontal to occipital disappeared in unattentional condition.
Most of electroencephalogram (EEG) acquired by multi-channels is difficult to be applied to the single-channel brain-computer interface (BCI) in the EEG analysis method based on left and right hand motor imagery. The present research applied an improved independent component analysis (ICA) method to realize pretreatment of the EEG effectively. Firstly, data drift was removed through linear drift correction. Secondly, the number of virtual channels were increased by applying delayed window data and some EEG artifacts which are namely electrooculogram (EOG) and electrocardiogram (ECG) were removed by ICA. Finally, the average instantaneous energy characteristics were calculated and classified through the instantaneous amplitude which was solved by applying Hilbert-Huang transform (HHT). The experiment proves that the method completes the EEG pretreatment and improves classification ratio of single-channel EEG, and lays a foundation of single-channel and portable BCI.
Artifacts produced by chest compression during cardiopulmonary resuscitation (CPR) seriously affect the reliability of shockable rhythm detection algorithms. In this paper, we proposed an adaptive CPR artifacts elimination algorithm without needing any reference channels. The clean electrocardiogram (ECG) signals can be extracted from the corrupted ECG signals by incorporating empirical mode decomposition (EMD) and independent component analysis (ICA). For evaluating the performance of the proposed algorithm, a back propagation neural network was constructed to implement the shockable rhythm detection. A total of 1 484 corrupted ECG samples collected from pigs were included in the analysis. The results of the experiments indicated that this method would greatly reduce the effects of the CPR artifacts and thereby increase the accuracy of the shockable rhythm detection algorithm.
In the research of non-invasive brain-computer interface (BCI), independent component analysis (ICA) has been considered as a promising method of electroencephalogram (EEG) preprocessing and feature enhancement. However, there have been few investigations and implements about online ICA-BCI system up till now. This paper reports the investigation of the ICA-based motor imagery BCI (MIBCI) system, combining the characteristics of unsupervised learning of ICA and event-related desynchronization (ERD) related to motor imagery. We constructed a simple and practical method of ICA spatial filter calculation and discriminate criterion of three-type motor imageries in the study. To validate the online performance of proposed algorithms, an ICA-MIBCI experimental system was fully established based on NeuroScan EEG amplifier and VC++ platform. Four subjects participated in the experiment of MIBCI testing and two of them took part in the online experiment. The average classification accuracies of the three-type motor imageries reached 89.78% and 89.89% in the offline and online testing, respectively. The experimental results showed that the proposed algorithm produced high classification accuracy and required less time consumption, which would have a prospect of cross platform application.