In the study of the scalp electroencephalogram (EEG)-based brain-computer interface (BCI), individual differences and complex background noise are two main factors which affect the stability of BCI system. For different subjects, therefore, optimization of BCI system parameters is necessary, including the optimal designing of temporal and spatial filters parameters as well as the classifier parameters. In order to improve the accuracy of BCI system, this paper proposes a new BCI information processing method, which combines the optimization design of independent component analysis spatial filter (ICA-SF) with the multiple sub-band features of EEG signals. The four subjects' three-class motor imagery EEG (MI-EEG) data collected in different periods were analyzed with the proposed method. Experimental results revealed that, during the inner and outer cross-validation of single subject as well as the subject-to-subject validation, the proposed multiple sub-band method always had higher average classification accuracy compared to those with single-band method, and the maximum difference could achieve 6.08% and 5.15%, respectively.
Simultaneous recording of electroencephalogram (EEG)-functional magnetic resonance imaging (fMRI) plays an important role in scientific research and clinical field due to its high spatial and temporal resolution. However, the fusion results are seriously influenced by ballistocardiogram (BCG) artifacts under MRI environment. In this paper, we improve the off-line constrained independent components analysis using real-time technique (rt-cICA), which is applied to the simulated and real resting-state EEG data. The results show that for simulated data analysis, the value of error in signal amplitude (Er) obtained by rt-cICA method was obviously lower than the traditional methods such as average artifact subtraction (P<0.005). In real EEG data analysis, the improvement of normalized power spectrum (INPS) calculated by rt-cICA method was much higher than other methods (P<0.005). In conclusion, the novel method proposed by this paper lays the technical foundation for further research on the fusion model of EEG-fMRI.