west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "machine learning model" 1 results
  • Evaluation of daily number of new ischemic stroke cases in a hospital in Chengdu based on machine learning and meteorological factors

    Objective To evaluate the predictive effect of three machine learning methods, namely support vector machine (SVM), K-nearest neighbor (KNN) and decision tree, on the daily number of new patients with ischemic stroke in Chengdu. Methods The numbers of daily new ischemic stroke patients from January 1st, 2019 to March 28th, 2021 were extracted from the Third People’s Hospital of Chengdu. The weather and meteorological data and air quality data of Chengdu came from China Weather Network in the same period. Correlation analyses, multinominal logistic regression, and principal component analysis were used to explore the influencing factors for the level of daily number of new ischemic stroke patients in this hospital. Then, using R 4.1.2 software, the data were randomly divided in a ratio of 7∶3 (70% into train set and 30% into validation set), and were respectively used to train and certify the three machine learning methods, SVM, KNN and decision tree, and logistic regression model was used as the benchmark model. F1 score, the area under the receiver operating characteristic curve (AUC) and accuracy of each model were calculated. The data dividing, training and validation were repeated for three times, and the average F1 scores, AUCs and accuracies of the three times were used to compare the prediction effects of the four models. Results According to the accuracies from high to low, the prediction effects of the four models were ranked as SVM (88.9%), logistic regression model (87.5%), decision tree (85.9%), and KNN (85.1%); according to the F1 scores, the models were ranked as SVM (66.9%), KNN (62.7%), decision tree (59.1%), and logistic regression model (57.7%); according to the AUCs, the order from high to low was SVM (88.5%), logistic regression model (87.7%), KNN (84.7%), and decision tree (71.5%). Conclusion The prediction result of SVM is better than the traditional logistic regression model and the other two machine learning models.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content