west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "microbiota" 38 results
  • Establishment of COPD gut microbiota model with fecal microbiota transplantation and its evaluation

    ObjectiveTo establisht a gut microbiota mice model for chronic obstructive pulmonary disease (COPD) with fecal microbiota transplantation (FMT) and its evaluation.MethodsThe mice received FMT from healthy individuals, COPD Ⅰ-Ⅱ subjects, or COPD Ⅲ–Ⅳ subjects. After microbiota depletion, the FMT was performed by a single oral administration of 100 μL per mouse every other day, for a total of 14 times in 28 days. On the 29th day, the peripheral blood mononuclear cells were analyzed, the gut microbiota of mice before and after FMT was analyzed by 16S rRNA sequencing, and the mice model were evaluated.ResultsThe operational taxonomic units, Chao 1 and Shannon indexes of mice all decreased significantly after antibiotic treatment (P<0.001), but increased significantly after FMT from healthy individuals, COPD Ⅰ-Ⅱ subjects, or COPD Ⅲ–Ⅳ subjects (P<0.05 or P<0.01). The abundance of Firmicutes, Proteobacteria and Actinobacteria in the guts of the mice in the healthy human FMT group, COPD Ⅰ-Ⅱ FMT group and COPD Ⅲ-Ⅳ FMT group were significantly different from those of the control group who only received phosphate buffer saline instead of FMT (P<0.05 or P<0.01). The auxiliary T lymphocytes and cytotoxic T lymphocytes were higher, but B lymphocytes decreased in the peripheral blood of the mice in the COPD Ⅰ-Ⅱ FMT group and COPD Ⅲ-Ⅳ FMT group (P<0.05 or P<0.01).ConclusionFMT can successfully establish a COPD gut microbiota research model.

    Release date:2021-08-30 02:14 Export PDF Favorites Scan
  • Research progress in upper digestive tract microbiota and esophageal cancer

    The incidence and mortality of esophageal cancer are high, with strong invasiveness and poor prognosis. In China, the number of morbidity and death accounts for about half of the world. The cause of the disease has not yet been clarified, and it is known to be related to many factors such as chronic damage to the upper digestive tract caused by poor diet and lifestyle, heredity and environment. With the continuous advancement of molecular biology technology, metagenomics and high-throughput sequencing began to be used as non-culture methods instead of traditional culture methods for micro-ecological analysis, and is becoming a research hotspot. Many studies have shown that the disturbance of upper digestive tract microecology may be one of the causes of esophageal cancer, which affects the occurrence and development of esophageal cancer through complex interactions with the body and various mechanisms. This paper reviews the research progress, which is of great significance to further clarify the value of upper gastrointestinal microecology in the pathogenesis, diagnosis and treatment of esophageal cancer.

    Release date:2020-01-17 05:18 Export PDF Favorites Scan
  • Effects of Roux-en-Y Gastric Bypass on Intestinal Microbiota of Normal Sprague-Dawley Rats

    ObjectiveTo investigate the effect of Roux-en-Y gastric bypass (RYGB) on the composition of intestinal microbiota among the biliopancreatic limb, the Roux limb, and the common channel in normal Sprague-Dawley (SD) rats. MethodsSixteen SD rats were randomly divided into sham surgery group (Sham group) and RYGB group, each group enrolled 8 rats. Rats in Sham group underwent sham surgery of end to end anastomosis in situ after cutting off the stomach and jejunum, and rats in RYGB group underwent RYGB. Then quantitative real-time PCR (RT-PCR) method was used to detect the expression of total bacteria, Bifidobacterium, Bacteroides, and Lactobacillus mRNA at biliopancreatic limb, the Roux limb, and the common channel. At last the comparison of mRNA in 4 kinds of bacteria was performed. ResultsCompared with Sham group, the weight of rats in RYGB group was lower at 8 weeks after surgery (P<0.01). RT-PCR results showed that, expression levels of total bacteria, Bifidobacterium, and Bacteroides mRNA at the Roux limb and the common channel in RYGB group were higher than corresponding site of rats in Sham group (P<0.05), but there was no significant difference at biliopancreatic limb between the 2 groups (P>0.05). Expression level of Lactobacillus mRNA at the Roux limb in RYGB group was higher than corresponding site of rats in Sham group (P<0.05), but there was no significant difference at biliopancreatic limb and the common channel between the 2 groups (P>0.05). ConclusionRYGB can significantly improve expression levels of the total bacteria, Bifidobacterium, and Bacteroides mRNA at Roux limb and the common channel, increase the level of Lactobacillus mRNA at Roux limb, while has no influence on biliopancreatic limb.

    Release date: Export PDF Favorites Scan
  • Study on the correlation between the distribution of traditional Chinese medicine syndrome elements and salivary microbiota in patients with pulmonary nodules

    Objective To analyze the differences in distribution of traditional Chinese medicine (TCM) syndrome elements and salivary microbiota between the individuals with pulmonary nodules and those without, and to explore the potential correlation between the distribution of TCM syndrome elements and salivary microbiota in patients with pulmonary nodules. Methods We retrospectively recruited 173 patients with pulmonary nodules (PN) and 40 healthy controls (HC). The four diagnostic information was collected from all participants, and syndrome differentiation method was used to analyze the distribution of TCM syndrome elements in both groups. Saliva samples were obtained from the subjects for 16S rRNA high-throughput sequencing to obtain differential microbiota and to explore the correlation between TCM syndrome elements and salivary microbiota in the evolution of the pulmonary nodule disease. Results The study found that in the PN group, the primary TCM syndrome elements related to disease location were the lung and liver, and the primary TCM syndrome elements related to disease nature were yin deficiency and phlegm. In the HC group, the primary TCM syndrome elements related to disease location were the lung and spleen, and the primary TCM syndrome elements related to disease nature were dampness and qi deficiency. There were differences between the two groups in the distribution of TCM syndrome elements related to disease location (lung, liver, kidney, exterior, heart) and disease nature (yin deficiency, phlegm, qi stagnation, qi deficiency, dampness, blood deficiency, heat, blood stasis) (P<0.05). The species abundance of the salivary microbiota was higher in the PN group than that in the HC group (P<0.05), and there was significant difference in community composition between the two groups (P<0.05). Correlation analysis using multiple methods, including Mantel test network heatmap analysis and Spearman correlation analysis and so on, the results showed that in the PN group, Prevotella and Porphyromonas were positively correlated with disease location in the lung, and Porphyromonas and Granulicatella were positively correlated with disease nature in yin deficiency (P<0.05). ConclusionThe study concludes that there are notable differences in the distribution of TCM syndrome elements and the species abundance and composition of salivary microbiota between the patients with pulmonary nodules and the healthy individuals. The distinct external syndrome manifestations in patients with pulmonary nodules, compared to healthy individuals, may be a cascade event triggered by changes in the salivary microbiota. The dual correlation of Porphyromonas with both disease location and nature suggests that changes in its abundance may serve as an objective indicator for the improvement of symptoms in patients with yin deficiency-type pulmonary nodules.

    Release date:2025-04-28 02:31 Export PDF Favorites Scan
  • Progress in the study of correlation between gut microbes and epilepsy and its clinical application

    The correlation between gut microbes and epilepsy is a hot research topic. This review aims to summarize the effects of Ketogenic diet (KD) on gut microbes and the preclinical and clinical progress of the use of Fecal microbiota transplants (FMT) and Probiotics in the intervention of epilepsy to provide clinical reference. Gut microbes mediates the antiepileptic effect of KD. Many studies have found that bactericides decreased in epileptic patients, and KD can increase bactericides abundance, which may be one of its effective mechanisms. Both FMT and probiotics showed antiepileptic effects on epileptic model mice with different pathogenesis, suggesting that gut microbes is an important target for epilepsy treatment. Preliminary clinical studies of small samples suggest that the use of probiotics can effectively treat refractory epilepsy and autoimmune-associated epilepsy, and can improve comorbidities. No serious and long-term side effects of probiotics have been found in epileptic patients. In the future, more high-quality studies are needed to further clarify its efficacy and mechanisms, which could lead to new strategies for epilepsy treatment and refresh our understanding of the causes of epilepsy.

    Release date:2023-05-04 04:20 Export PDF Favorites Scan
  • Study on the Intestinal Microecological Characteristics of Different Airflow Obstruction Phenotypes in Asthma Patients

    ObjectiveTo explore the composition of intestinal microbiota between patients with fixed airflow obstruction asthma, reversible airflow obstruction asthma, and healthy control, and analyze the correlation between key differential bacterial distribution and clinical characteristics. MethodsFifteen patients with fixed airflow obstruction asthma (FAO) and 13 patients with reversible airflow obstruction asthma (RAO) were included, along with 11 matched healthy control subjects. Clinical data were collected, and lung function tests and induced sputum examination were performed. Blood and stool samples were tested to compare the gut microbiota status among the groups, and analyze the relationship between gut microbiota abundance and patients' blood routine, IgE levels, lung function, and induced sputum. Results The dominant bacterial compositions were similar in the three groups, but there were differences in the abundance of some species. Compared to the RAO group, the FAO group showed a significant increase in the genera of Bacteroides and Escherichia coli, while Pseudomonas was significantly decreased. The phylum Firmicutes was negatively correlated with the course of asthma, while the phylum Bacteroidetes and genus Bacteroides were positively correlated with the asthma course. Bacteroidetes was negatively correlated with Pre-BD FEV1/FVC, Pseudomonas was positively correlated with Pre-BD FEV1, Escherichia coli was negatively correlated with Post-BD FEV1/FVC, and Bacteroides was negatively correlated with Post-BD MMEF. The class Actinobacteria and the order Actinomycetales were negatively correlated with peripheral blood EOS%, while the order Enterobacteriales and the family Enterobacteriaceae were positively correlated with peripheral blood IgE levels. Furthermore, Actinobacteria and Actinomycetales were negatively correlated with induced sputum EOS%. Conclusions There are differences in the gut microbiota among patients with fixed airflow obstruction asthma, reversible airflow obstruction asthma, and healthy individuals. Bacteroides and Escherichia coli are enriched in the fixed airflow obstruction asthma group, while the Firmicutes are increased in the reversible airflow obstruction asthma group. These three microbiota may act together on Th2 cell-mediated inflammatory responses, influencing the process of airway remodeling, and thereby interfering with the occurrence of fixed airflow obstruction in asthma.

    Release date: Export PDF Favorites Scan
  • Causal relationship between gut microbiota and idiopathic pulmonary fibrosis: A bi-directional two-sample Mendelian randomization study

    ObjectiveTo investigate the causal relationship between gut microbiota and idiopathic pulmonary fibrosis (IPF). MethodsGenome-wide association studies (GWAS) data of gut microbiota and IPF were obtained from MiBioGen and Finngen databases, respectively. Instrumental variables were screened by means of significance, linkage disequilibrium, weak instrumental variable screening, and removal of confounding factors (genetics, smoking, host characteristics). Inverse variance weighted (IVW) was used as the main Mendelian randomization (MR) analysis method, and the weighted median, simple mode, MR-Egger, and weighted mode were used to perform MR to reveal the causal effect of gut microbiota and IPF. The Cochrane's Q, leave-one-out, MR-Egger-intercept, and Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) and Steiger tests were used to analyze the heterogeneity, horizontal pleiotropy, outliers, and directionality, respectively. ResultsIVW analysis results showed that Actinomycetes [OR=1.773, 95%CI (1.323, 2.377), P<0.001], Erysipelatoclostridium [OR=2.077, 95%CI (1.107, 3.896), P=0.023], and Streptococcus [OR=1.35, 95%CI (1.100, 1.657), P=0.004] could increase the risk of IPF. Bifidobacterium [OR=0.668, 95%CI (0.620, 0.720), P<0.001], Ruminococcus [OR=0.434, 95%CI (0.222,0.848), P=0.015], and Tyzzerella [OR=0.479, 95%CI (0.304, 0.755), P=0.001] could reduce the risk of IPF. No significant heterogeneity, horizontal pleiotropy, outliers, and reverse causality were found. ConclusionActinobacteria, Erysipelatoclostridium and Streptococcus may increase the risk of IPF, while Bifidobacterium, Ruminococcus and Tyzzerella may reduce the risk of IPF. Regulation of the above gut microbiota may become a new direction in the study of the pathogenesis of IPF.

    Release date: Export PDF Favorites Scan
  • Exploring the causal relationship between gut microbiota and childhood asthma based on Mendelian randomization

    Objective To analyze the causal relationship between gut microbiota and childhood asthma based on Mendelian randomization (MR). Methods The human gut microbiota dataset was downloaded from the MiBioGen database, and 196 known bacterial groups (9 phyla, 16 classes, 20 orders, 32 families, and 119 genera) were retained as exposure factors. Single nucleotide polymorphisms (SNPs) that were strongly correlated with exposure factors and independent of each other were selected as effective instrumental variables. A childhood asthma dataset with 3 025 patients and 135 449 controls was downloaded from the genome-wide association studies database as the outcome variable. Two-sample MR analysis was performed using inverse variance weighted, weighted median, MR-Egger, weighted model and simple model methods, respectively. The causal association between gut microbiota and childhood asthma was evaluated by odds ratio (OR). Sensitivity analysis was performed by leave-one-out method. Horizontal pleiotropy was tested by MR-Egger intercept test and MR-PRESSO global test, and Cochran’s Q test was used for heterogeneity. Results A total of 15 out of 196 gut microbiota groups were found to have a causal association (P<0.05) with the risk of childhood asthma, with a total of 181 SNPs included in the analysis. Inverse variance weighted analysis showed that Mollicutes [OR=1.42, 95% confidence interval (CI) (1.10, 1.83), P=0.007], Escherichia-Shigella [OR=1.39, 95%CI (1.02, 1.90), P=0.036], Oxalobacter [OR=1.30, 95%CI (1.10, 1.54), P=0.002], Ruminococcaceae UCG-009 [OR=1.34, 95%CI (1.09, 1.64), P=0.006] and Tenericutes [OR=1.42, 95%CI (1.10, 1.83), P=0.007] were significantly positively correlated with childhood asthma. Actinobacteria [OR=0.76, 95%CI (0.58, 0.99), P=0.042], Bifidobacteriaceae [OR=0.76, 95%CI (0.58, 0.98), P=0.035], Eubacterium nodatum group [OR=0.81, 95%CI (0.70, 0.94), P=0.007], Bifidobacterales [OR=0.76, 95%CI (0.58, 0.98), P=0.035] and Actinobacteria [OR=0.74, 95%CI (0.56, 0.99), P=0.040] were negatively correlated with childhood asthma. In addition, the results of leave-one-out sensitivity analysis were stable, MR-Egger intercept test and MR-PRESSO global test showed no horizontal pleiotropy, and Cochran’s Q test showed no heterogeneity. Conclusions There is a causal relationship between gut microbiota and childhood asthma. Mollicutes, Escherichia-Shigella, Oxalobacter, Ruminococcaceae UCG-009 and Tenericutes may increase the risk of childhood asthma. Actinobacteria, Bifidobacteriaceae, Eubacterium nodatum group, Bifidobacterales and Actinobacteria can reduce the risk of childhood asthma.

    Release date:2024-05-28 01:17 Export PDF Favorites Scan
  • Research progress of tumor-associated macrophages in colorectal cancer

    There is a bidirectional association between tumor-associated macrophage (TAM) and colorectal cancer. Small molecular substances metabolized by colorectal cancer affect the reprogramming of TAM, and TAM in turn regulates the biological behavior of colorectal cancer cells by secreting small molecular substances, and promotes the progression of colorectal cancer. In addition, gut microbiota metabolites are closely related to TAM reprogramming, and intestinal flora imbalance leads to gut barrier damage, favoring bacterial translocation and causing chronic tumorigenic inflammation. Studying the reprogramming mechanism affecting TAM and its relationship with the occurrence and development of colorectal cancer may provide new ideas for the study of immunotherapy in patients with colorectal cancer. This article reviews the research progress of TAM in patients with colorectal cancer, aims to provide a reference for clinical research.

    Release date:2022-10-19 05:32 Export PDF Favorites Scan
  • Research progress on the relationship between gut microbiota dysbiosis and osteoarthritis

    Objective To introduce the research progress on the relationship between gut microbiota dysbiosis and osteoarthritis (OA), focus on the possible mechanism of gut microbiota dysbiosis promoting OA, and propose a new therapeutic direction. Methods The domestic and foreign research literature on the relationship between gut microbiota dysbiosis and OA was reviewed. The role of the former in the occurrence and development of OA and the new ideas for the treatment of OA were summarized. Results The gut microbiota dysbiosis promotes the development of OA mainly in three aspects. First, the gut microbiota dysbiosis destroys intestinal permeability and causes low-grade inflammation, which aggravate OA. Secondly, the gut microbiota dysbiosis promotes the development of OA through metabolic syndrome. Thirdly, the gut microbiota dysbiosis is involved in the development of OA by regulating the metabolism and transport of trace elements. Studies have shown that improving gut microbiota dysbiosis by taking probiotics and transplanting fecal microbiota can reduce systemic inflammation and regulate metabolic balance, thus treating OA. Conclusion Gut microbiota dysbiosis is closely related to the development of OA, and improving gut microbiota dysbiosis can be an important idea for OA treatment.

    Release date:2023-03-13 08:33 Export PDF Favorites Scan
4 pages Previous 1 2 3 4 Next

Format

Content