Objective To explore the effects of DNA cross-linking repair 1B (DCLRE1B) gene on the migration and invasion ability of hepatocellular carcinoma cell. Methods Bioinformatics analysis was used to analyze the expression of DCLRE1B mRNA in hepatocellular carcinoma, and its relationship with the prognosis and related influencing factors of patients. Immunohistochemical staining was used to detect the expression of DCLRE1B protein in resected hepatocellular carcinoma tissues and their corresponding normal liver tissues. The DCLRE1B gene silenced Huh7 and HepG2 hepatocellular carcinoma cell lines were constructed by lentivirus, and the transfected effect was detected by Western blot. The migration and invasion of DCLRE1B silenced hepatocellular carcinoma cells were detected by scratch test and Transwell method. The changes of genes related to epithelial mesenchymal transformation (EMT) after DCLRE1B silencing were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Results ① The biological information analysis results showed that: The mRNA expression of DCLRE1B was highly expressed in a variety of tumors including hepatocellular carcinoma (P<0.05). The mRNA expression of DCLRE1B was associated with the TNM staging of tumor (P<0.05). The relative expression level of DCLRE1B mRNA in hepatocellular carcinoma patients was related to their prognosis. The overall survival situation (P=0.038) and progression free survival situation (P=0.005) of hepatocellular carcinoma patients in the high expression group were worse than those in the low expression group. Univariate and multivariate Cox analysis showed that the expression of DCLRE1B gene was an independent factor affecting the prognosis of hepatocellular carcinoma (P<0.05). ② The positive rate of DCLRE1B protein expression in resected hepatocellular carcinoma tissues was higher than that in normal liver tissues (P<0.05). ③ Cell experiment results showed that: After stable silencing DCLRE1B gene of hepatocellular carcinoma cell (Huh7 and HepG2) constructed by lentivirus, the expression of DCLRE1B protein was significantly down regulated (P<0.05). After silencing DCLRE1B gene, the migration and invasion ability of hepatocellular carcinoma cells were significantly decreased (P<0.05). After silencing DCLRE1B, the mRNA expressions of E-cadherin, matrix metalloproteinase 9, and β-catenin were up regulated (P<0.05), and the mRNA expressions of N-cadherin and Vimentin were down regulated (P<0.05), but the mRNA expression of zinc finger transcription factor had no significant change, and the difference was not statistically significant (P>0.05). Conclusion Silencing DCLRE1B gene can inhibit the migration and invasion ability of hepatocellular carcinoma cells, and its mechanism may be related to the process of EMT.
ObjectiveTo investigate the regulatory mechanism of thioredoxin binding protein (TXNIP)/nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) pathway in the occurrence and development of breast cancer.MethodsThe resected 15 cases of breast cancer tissues and their adjacent tissues in our hospital from September 2019 to June 2020 were selected, and the immunohistochemistry was used to detect the expression levels of TXNIP and NLRP3 in breast cancer and its adjacent tissues. Three kinds of breast cancer cell lines (MDA-MB231, MCF-7 and SKBR3) and normal breast epithelial cell line (HMEC) were collected. Western blot was used to detect the relative expression levels of TXNIP and NLRP3 in three kinds of breast cancer cell lines and HMEC cell line. MDA-MB231 cancer cells were divided into blank control group (normal culture without any treatment), TXNIP overexpression group (Ad-TXNIP group, transfected with adenovirus vector carrying TXNIP overexpression sequence), Ad-TXNIP negative control group (Ad-eGFP1 group, transfected of empty adenovirus vector without TXNIP overexpression sequence), NLRP3 overexpression group (Ad-NLRP3 group, transfected with adenovirus vector containing NLRP3 overexpression sequence), TXNIP and NLRP3 overexpression co-transfection group (Ad-TXNIP+Ad-NLRP3 group, co-transfection of adenovirus vector carrying TXNIP and NLRP3 overexpression sequence), TXNIP overexpression and Ad-NLRP3 negative control (Ad-eGFP2) co-transfection group (Ad-TXNIP+Ad-eGFP2 group,co-transfection of adenovirus vector carrying TXNIP overexpression sequence and empty adenovirus without NLRP3 overexpression sequence). After 24 hours of transfection and culture, CCK-8 method was used to detect the MDA-MB231 cells proliferation. Transwell chamber method was used to detect MDA-MB231 cells migration and invasion. Nude mice tumorigenicity test was used to detect the tumorigenicity of the MDA-MB231 cells in vivo. Western blot was used to detect the expressions of TXNIP, NLRP3, proliferation marker protein (Ki-67), caspase-1, vascular endothelial growth factor (VEGF), interleukin (IL)-1β, IL-18 and caspase-1 precursor protein (pro-caspase-1) in the MDA-MB231 cells.ResultsCompared with the adjacent tissues, the relative expression level of TXNIP decreased (P<0.05) and the relative expression level of NLRP3 increased (P<0.05) in breast cancer tissues. Compared with normal breast epithelial cell line (HMEC cell line), the relative expression levels of TXNIP in MDA-MB231, MCF-7 and SKBR3 breast cancer cell lines were decreased (P<0.05), and the relative expression levels of NLRP3 were increased (P<0.05). Compared with the blank control group, the relative expression levels of TXNIP, NLRP3, IL-1β, IL-18, pro-caspase-1 and caspase-1 were increased (P<0.05), the relative expression levels of Ki-67 and VEGF, the proliferation activity, invasion and migration ability of MDA-MB231 cells and tumor weight were decreased (P<0.05) in the Ad-TXNIP group and the Ad-NLRP3 group. Compared with the Ad-TXNIP group and the Ad-NLRP3 group, the relative expression levels of TXNIP, NLRP3, IL-1β, IL-18, pro-caspase-1 and caspase-1 were further increased (P<0.05), the relative expression levels of Ki-67 and VEGF, the proliferation activity, invasion and migration ability of MDA-MB231 cells and tumor weight were further decreased (P<0.05) in the Ad-TXNIP+Ad-NLRP3 group.ConclusionsIn breast cancer tissues and breast cancer cell lines, TXNIP is low expression and NLRP3 is high expression. They can interact with each other to promote pyroptosis and inhibit the proliferation, invasion and migration of breast cancer cells.
ObjectiveTo investigate the effects of thrombospondin-1 active fragment (TSP-1) synthetical peptide VR-10 on proliferation and migration of rhesus choroidal-retinal endothelial (RF/6A) cell and the expressions of apoptosis relative genes in RF/6A cell. MethodsThe survival rate of RF/6A cell were detected by methyl thiazolyl tetrazolium, and migration ability was measured by transwell chamber after exposure to 1.0 μg/ml TSP-1 and synthetic peptide VR-10 (0.1, 1.0, 10.0 μg/ml) for different times (6, 12, 24, 48 hours). Caspase-3 and factor associated suicide (FAS) protein levels were measured by Western blot. The mRNA level of bcl-2 and FAS ligand (FASL) were measured by reverse transcription-polymerase chain reaction (RT-PCR). ResultsThe survival rate of RF/6A cells was determined by the treatment time and concentration of TSP-1(1.0 μg/ml) and the synthetic peptide VR-10 (0.1, 1.0, 10.0 μg/ml). The lowest survival ratio of RF/6A was 78% (P < 0.001) when cells were treated by 10 μg/ml synthetic peptide VR-10 after 48 hours. TSP-1 and synthetic peptide VR-10 could inhibit migration of RF/6A cells in transwell chamber (P < 0.001). 10.0 μg/ml synthetic peptide VR-10 had the strongest effect, 1.0 μg/ml TSP-1 was the next. Migration inhibition rate was increase with the increase of the concentration of VR-10 (P < 0.001). There was no significant differences between 0.1 μg/ml and 1.0 μg/ml VR-10 (P=0.114). Western bolt showed that RF/6A cell in control group mainly expressed the 32×103 procaspase-3 forms. To 10.0 μg/ml VR-10 treated group, it showed decreased expression of procaspase-3 (32×103) and concomitant increased expression of its shorter proapoptotic forms (20×103). Compared with control group, expression of FAS peptides were significantly increased in 10.0 μg/ml VR-10 treated group. Compared with control group, expression of FasL mRNA was significantly increased in 10.0 μg/ml VR-10 treated group(t=39.365, P=0.001), but the expression of bcl-2 mRNA was decreased(t=-67.419, P=0.000). ConclusionTSP-1 and synthetic peptide VR-10 had the ability to inhibit proliferation and migration of endothelial cell, and also induce apoptosis by increasing FAS/FASL expression and repressing bcl-2 expression.
ObjectiveTo investigate the effect of Wnt5a derived from tumor-associated fibroblasts (CAFs) on the migration and invasion of gastric cancer cells. MethodsThe differentially expressed genes Wnt5a between CAFs and normal gastric fibroblasts (NGFs) in gastric cancer tissues and their corresponding normal gastric tissues using the GEO database GSE194261 dataset were screened. Immunohistochemical method was used to detect the expression of Wnt5a protein in tissue samples of clinical gastric cancer patients, and the relationship between Wnt5a protein expression and clinicopathological features of gastric cancer was analyzed. CAFs and NGFs were extracted from fresh surgical specimens of gastric cancer patients, and the expression of Wnt5a in CAFs was detected by real-time fluorescence quantitative-polymerase chain reaction and Western blot experiment. Transwell invasion and migration experiment was used to observe the effects of CAFs, inhibition of Wnt5a expression in CAFs and different concentrations of recombinant Wnt5a protein on the migration and invasion ability of gastric cancer MGC-803 and MKN-28 cell lines in vitro. ResultsThrough the screening of GEO database GSE194261 data set, it was found that Wnt5a was more expressed in CAFs than NGFs (P<0.05). Immunohistochemical results showed that the expression of Wnt5a protein in gastric cancer tissues was significantly stronger than that in normal gastric tissues (P<0.05), and the expression of Wnt5a protein was related to T stage of tumor (χ2=5.035, P<0.05), but not related to gender, age, degree of tumor differentiation, lymph node metastasis, vascular invasion and nerve invasion (P>0.05). Inhibiting Wnt5a derived from CAFs could inhibit the invasion and migration of gastric cancer cells. By stimulating gastric cancer cells with different concentrations of human recombinant Wnt5a protein, it was found that when the concentration of human recombinant Wnt5a protein was greater than 100 ng/mL, the invasion and migration abilities of MGC-803 and MKN-28 gastric cancer cells were significantly increased (P<0.05). ConclusionWnt5a is highly expressed in CAFs derived from the interstitial tissue of gastric cancer, which is related to the invasion depth of gastric cancer and can promote the invasion and migration of gastric cancer cells.
ObjectiveTo observe the effects of p21 activated kinase 4 (PAK4) on the mitochondrial function and biological behavior in retinal vascular endothelial cells. MethodsThe experimental study was divided into two parts: in vivo animal experiment and in vitro cell experiment. In vivo animal experiments: 12 healthy C57BL/6J male mice were randomly divided into normal control group and diabetes group, with 6 mice in each group. Diabetes mice were induced by streptozotocin to establish diabetes model. Eight weeks after modeling, quantitative real-time polymerase chain reaction and Western blots were performed to detect the expression of PAK4 in diabetic retinas. In vitro cell experiments: the human retinal microvascular endothelial cells (hRMEC) were divided into three groups: conventional cultured cells group (N group), empty vector transfected (Vector group); pcDNA-PAK4 eukaryotic expression plasmid transfected group (PAK4 group). WB and qPCR were used to detect transfection efficiency, while scratching assay, cell scratch test was used to detect cell migration in hRMEC of each group. In vitro white blood cell adhesion experiment combined with 4 ', 6-diamino-2-phenylindole staining was used to detect the number of white blood cells adhering to hRMEC in each group. The Seahorse XFe96 cell energy metabolism analyzer measures intracellular mitochondrial basal respiration, adenosine triphosphate (ATP) production, maximum respiration, and reserve respiration capacity. The t-test was used for comparison between the two groups. Single factor analysis of variance was used for comparison among the three groups. ResultsIn vivo animal experiments: compared with normal control group, the relative expression levels of PAK4 mRNA and protein in retina of diabetic mice were significantly increased, with statistical significance (t=25.372, 22.419, 25.372; P<0.05). In vitro cell experiment: compared with the N group and Vector group, the PAK4 protein, mRNA relative expression and cell mobility in the hRMEC of PAK4 group were significantly increased, with statistical significance (F=36.821, 38.692, 29.421; P<0.05). Flow cytometry showed that the adhesion number of leukocytes on hRMEC in PAK4 group was significantly increased, and the difference was statistically significant (F=39.649, P<0.01). Mitochondrial pressure measurement results showed that the capacity of mitochondrial basic respiration, ATP production, maximum respiration and reserve respiration in hRMEC in PAK4 group was significantly decreased, with statistical significance (F=27.472, 22.315, 31.147, 27.472; P<0.05). ConclusionOver-expression of PAK4 impairs mitochondrial function and significantly promotes leukocyte adhesion and migration in retinal vascular endothelial cells.
Objective To investigate the effects of NGF on the prol iferation, mitotic cycle, collagen synthesis and migration of human dermal fibroblasts (HDFs), and to explore the function of NGF on the wound heal ing. Methods The 3rd generation of HDFs were incubated with various concentrations of NGF (0, 25, 50, 100, 200 and 400 ng/mL), the cell prol iferation was measured with MTT assay. After treated with NGF at 0, 100 ng/mL, the cell cycle of HDFs was determined by flow cytometry (FCM). Hydroxyprol ine and real-time fluorescence quantitative PCR (FQ-PCR) were used to measure collagen synthesis at protein level and mRNA level respectively. The in vitro cell scratch wound model was set up to observe the effect of NGF (0, 50, 100 and 200 ng/mL) on the migration of HDFs after 24 hours of culture. Results Absorbance value of HDFs for different concentrations of NGF (0, 25, 50, 100, 200, and 400 ng/ mL) showed that NGF did not influence the prol iferation of HDFs (P gt; 0.05). When HDFs were treated with NGF at 0 and 100 ng/mL, the result of FCM analysis showed that percentage of HDFs in G0/G1, S, G2/M phases were not changed (P gt; 0.05). Compared with control group, the expression of Col I and Col III were not significantly different, measured by both hydroxyprol ine and FQ-PCR (P gt; 0.05). The rates of HDFs’ migration at various concentrations of NGF (0, 50, 100, 200 ng/ mL) were 52.12% ± 6.50%, 80.67% ± 8.51%, 66.33% ± 3.58%, and 61.19% ± 0.97%, respectively, indicating that NGF could significantly enhanced the migration of HDFs at 50 and 100 ng/mL (P lt; 0.05). Conclusion NGF does not influence prol iferation, mitotic cycle and collagen synthesis of HDFs, but significantly enhanced migration in an in vitro model of wounded fibroblasts.
The article aims to explore the optimal concentration of arsenic trioxide (As2O3) on HepG2 of liver cancer cells, and the effect of As2O3 on the migration, invasion and apoptosis of HepG2 cells. In this study, the activity of HepG2 cells treated with 0, 1, 2, 4, 8, 16, 32 μmol/L As2O3 was tested by CCK-8 method, the semi-inhibitory concentration (IC50) was calculated, and the morphological changes of HepG2 cells were observed after the action of As2O3 at IC50 concentration for 12, 24, 48 h. The effect of As2O3 on cell migration and invasion ability was verified by wound healing experiment and Transwell invasion experiment. Western blot and qRT-PCR were used to detect the effects of As2O3 on the gene and protein expression levels related to cell migration, invasion and apoptosis. The results showed that, compared with the control group, the activity of HepG2 cells decreased with the increase of the concentration of As2O3 treatment, showing a dose-dependent effect, and its IC50 was 7.3 μmol/L. After 24 hours’ treatment with 8 μmol/L As2O3, HepG2 cells underwent significant apoptosis, and its migration and invasion abilities were significantly reduced. In addition, the protein expression levels of RhoA, Cdc42, Rac1 and matrix metalloproteinase-9 (MMP-9) were down-regulated, the protein and mRNA expression levels of anti-apoptotic gene Bcl-2 were significantly down-regulated, and the protein and mRNA expression levels of pro-apoptotic genes Bax and Caspase-3 were significantly up-regulated. The above results indicate that certain concentration of As2O3 can inhibit the migration and invasion of hepatocellular carcinoma cells and promote the apoptosis of hepatocellular carcinoma cells.
ObjectiveTo study the effects of ATP citrate lyase (ACLY) gene on proliferation, apoptosis, invasion, and lipid metabolism of colon cancer cells.MethodsColon cancer cells HCT116 were transfected with lentiviral knockdown ACLY gene in vitro and divided into three groups according to cell treatment: HCT116 cells with ACLY gene knockdown as knockdown group, empty vector transfected cells as negative control group, and untreated colon cancer HCT116 cells as blank control group. After the stable new cell line was screened with puromycin, the expression of ACLY protein was detected by Western blot method, the lipid production of cells was detected by triglyceride test kit, the proliferation ability of cells was detected by CCK-8 method, the apoptosis rate was detected by flow cytometry, and the migration ability of cells was detected by cell scratch test.ResultsThe cell survival rate of the knockdown group was lower than those of the blank control group and the negative control group at 120 h, but there was no significant difference among the three groups at 24 h and 48 h. Compared with the negative control group and the blank control group, the apoptosis rate in the knockdown group increased, the 24 h migration ability and the level of intracellular triglyceride decreased.ConclusionACLY gene knockdown can inhibit the proliferation, apoptosis, and migration of colon cancer cells, and its mechanism may be related to the decrease of lipid synthesis ability of colon cancer cells.
ObjectiveTo observe the effects of aquaporin 1 (AQP1) on the proliferation and migration of endothelial progenitor-endothelial progenitor cells (EPC).MethodsBone marrow cells of AQP1 wild-type (WT) (n=6) and knockout-type (KO) mice (n=6) were isolated and differentiated into EPC in vitro. Immunofluorescence was used to detect cell surface antigens to identify EPC. Live cell kinetic imaging and quantification technology, transwell migration assays, as well as scratch test were used to compare the function of EPC between AQP1 WT and KO mice.ResultsEPC culture showed that cells were initially suspended and gradually adhered to typical mesenchymal stem cells within 7 days. After cultured on special medium for endothelial cells they were adhered and differentiated, and fusiform or polygonal, paving stone-like EPC were observed around 14 days. When cultured by special medium of EPC, CD133 and CD31 were positively detected after 7 days, and CD34 and Flk-1 were positively detected after 14 days. Positive expression of AQP1 was only detected in EPC of AQP1 WT mice. Functional studies of EPC revealed there was no significant difference in the proliferation of EPC between AQP1 WT and KO group mice. Transwell assay showed that EPC migration ability of AQP1 KO mice was significantly weaker than that of WT mice. The scratch healing ability of EPC in AQP1 KO mice was significantly lower than that of WT mice.ConclusionsEPC initially shows the characteristics of stem cells and with the prolongation of culture time, EPC gradually shows the characteristics of endothelial cells. AQP1 affects the EPC migration rather than proliferation.
Objective To explore the effects of Zhaoke defibrase and anti alpha;vbeta;3mAb (23C6) on the adhesion and immigration of bovine retinal vascular endothelial cells. Methods The culture dishes coated with vitronectin (Vn) and collagen,assays of adhesion and immigration were performed 60 minutes after different concentration of Zhaoke defibrase and anti-alpha;vbeta;3 mAb was added to the bovine retinal vascular endothelial cells. The apoptosis of bovine retinal vascular endothelial cells induced by Zhaoke defibrase and anti-alpha;vbeta;3 mAb was detected by electron microscopy. Results Both Zhaoke defibrase and anti-alpha;vbeta;3 mAb inhibited the adhesion and immigration of bovine retinal vascular endothelial cells in a dose-dependent manner. The inhibited concentration (IC50) of Zhaoke defibrase was less than 0.05 mu;mol/L, while (IC50) of anti-alpha;vbeta;3 mAb was more than 2.5 mu;mol/L. 81.8% endothelial cells adhering to Vn were inhibited by 0.1 mu;mol/L Zhaoke defibrase, while 76.3% by endothelial cells adhering to Vn were inhibited by 10 mu;mol/L anti-alpha;vbeta;3 mAb. Typical apoptosis cells were found in bovine retinal vascular endothelial cells after affected by Zhaoke defibrase and anti-alpha;vbeta;3 mAb. Conclusion Both Zhaoke defibrase and anti- alpha;vbeta;3mAb can significantly inhibit the adhesion and immigration of bovine retinal vascular endothelial cells to extracellular matrix, and the mechanism may lie in inducing the apoptosis of endothelial cells. (Chin J Ocul Fundus Dis, 2005,21:118-121)