Mucin antigen 4 (MUC4) is a molecular marker for some malignant tumors for early tumor diagnosis, prognosis and targeted therapy. It provides a new research direction in tumor diagnosis and treatment that will have a wide application prospect. In recent years, there has been a large number of research reports on the basic and clinical studies about MUC4, but the molecular imaging study about MUC4 is seldom reported. In this paper the recent research about MUC4 on basic and clinical studies is briefly reviewed, and it is expected to promote the development of tumor molecular imaging.
Cancer is one of the main causes of death for human beings. Clinical oncologists increasingly rely upon imaging for diagnosis, stage, response assessment, and follow-up in cancer patient. However, 18F-FDG is not a tumor specific agent, inflammation and infection also have intensive uptake of 18F-FDG, resulting in false positive diagnosis, and some tumors have low uptake of 18F-FDG or even do not uptake 18F-FDG, leading to false negative diagnosis. So it is urgent to develop non-18F-FDG novel tumor targeting agent. Recently, a large number of researches in vitro have demonstrated that berberine has anti-tumor activity against a variety of tumor cells by inducing tumor cell apoptosis through inhibition of mitochondrial respiratory chain etc. So far, there is no credible evidence of berberine targeting in tumor in vivo. We proposed a hypothesis that berberine has the characteristics of tumor targeting biodistribution in vivo, and verified the proposal by 18F-berberine PET/CT imaging in VX2 muscle tumor-bearing rabbit model. In this review, we intend to give an overview of the progress of berberine anticancer, the structural bases of berberine anticancer and the uderlying molecular mechanisms of berberine anticancer indentified so far. We also introduce the first visualization of 18F labeled berberine derivatives targeting tumor in VX2 muscle tumor-bearing rabbit model by PET/CT. These breakthrough findings suggest that 18F-berberine derivatives as a potential PET/CT tumor targeted molecular imaging agent may have important implications for cancer targeting therapy, molecular imaging and modernization of Traditional Chinese Medicine.
ObjectiveTo summarize research progress of molecular imaging in microvascular invasion of hepatocellular carcinoma.MethodThe literatures about the molecular imaging in recent years at home and abroad on the microvascular invasion of hepatocellular carcinoma were reviewed and analyzed.ResultsThe molecular imaging methods such as the Gd-EOB-DTPA enhanced scan, irrelevant movement within voxel diffusion weighted imaging, energy spectrum CT imaging, MR molecular probe imaging, etc. from the aspect of the microstructure multimodally studied the biological behaviors and characteristics of the disease had become the research hot topic and the development direction in the future, which played an important role in the early diagnosis and assessment of the microvascular invasion of hepatocellular carcinoma.ConclusionResearch method of molecular imaging has a prosperous prospect of clinical application in microvascular invasion of hepatocellular carcinoma.