west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "monoclonal/therapeutic use" 61 results
  • Overall assessment of the factors influencing the effect of anti-vascular endothelial growth factor for neovascular age-related macular degeneration to improve the comprehensive benefit of treatment

    The therapeutic effect of anti-vascular endothelial growth factor (VEGF) for neovascular age-related macular degeneration (nAMD) was determined by a number of factors. Comprehensive thorough analysis of clinical features, imaging results and treatment response can predict the potential efficacy and possible vision recovery for the patient, and also can optimize the treatment regime to make a personalized therapy plan. Precise medicine with data from genomics, proteomics and metabolomics study will provide more objective and accurate biology basis for individual precise treatment. The future research should focus on comprehensive assessment of factors affecting the efficacy of anti-VEGF therapy, to achieve individualized precise diagnosis and treatment, to improve the therapeutic outcome of nAMD.

    Release date: Export PDF Favorites Scan
  • The efficacy of intravitreal ranibizumab and (or) triamcinolone combined with laser photocoagulation for macular edema secondary to branch retinal vein occlusion

    ObjectiveTo investigate the efficacy and safety of intravitreal ranibizumab and (or) triamcinolone combined with laser photocoagulation for macular edema secondary to branch retinal vein occlusion (BRVO) during one year period. MethodsThe data of 31 eyes from 31 consecutive patients with macular edema secondary to BRVO during one year follow-up visit were retrospectively analyzed. Mean best corrected visual acuity (BCVA) logMAR was (0.74±0.36) and mean central retinal thickness (CRT) was (484.48±164.81)μm at baseline. All patients received standardized clinical comprehensive examinations including vision, intraocular pressure and optical coherence tomography for diagnosis before treatment. All patients received intravitreal injections of 0.5 mg ranibizumab (0.05 ml) at first visit. The continue PRN treatment were based on the visual acuity changes and the optical coherence tomography findings. Eyes received combined triamcinolone acetonide 0.05 ml (40 mg/ml) and ranibizumab for macular edema recurrence after two injections of ranibizumab and received laser photocoagulation during 10-14 days after third injections of ranibizumab. Mean injection of ranibizumab was 3.52±2.01, 15 eyes with triamcinolone acetonide (0.84±1.21), 21 eyes with laser photocoagulation (0.97±0.95) and 12 eyes with three treatment. Compared the visual acuities and CRTs of the first and the last visits by statistical analysis. ResultsMean visual acuity improved significantly to 0.42±0.33 logMAR (t=6.611, P=0.000). Mean improvement of visual acuity was 2.90±3.07 lines. A gain of three or more logarithmic lines was evaluated in 20/31 eyes (64.52%) at the last visit. Mean CRT was (326.19±117.80)μm (t=4.514, P=0.000).Mean reduction of CRT was (333.58±134.17)μm. A decrease of 100μm of CRT was evaluated in 17/31 eyes (54.84%). No severe ocular and systematic side effect was found. ConclusionThe efficacy and safety of intravitreal ranibizumab and (or) triamcinolone combined with laser photocoagulation for macular edema secondary to BRVO were assured.

    Release date: Export PDF Favorites Scan
  • The effect of preoperative intravitreal ranibizumab injection on the operation duration of vitrectomy and postoperative vision for the treatment of proliferative diabetic retinopathy

    ObjectiveTo observe the effect of preoperative intravitreal ranibizumab injection (IVR) on the operation duration of vitrectomy and postoperative vision for the treatment of proliferative diabetic retinopathy (PDR). MethodsA prospective study was carried out with the 90 PDR patients (90 eyes) who underwent vitrectomy. The 90 patients(90 eyes)were assigned to the vitrectomy only group(43 eyes) and the IVR combined with vitrectomy group (47 eyes). The IVR was performed 5-13 days prior to vitrectomy in the IVR combined with vitrectomy group. There were 15 eyes with fibrous proliferation PDR (FPDR), 16 eyes with advanced PDR (APDR) without involving the macular and 16 eyes with APDR involving the macular in the vitrectomy only group. There were 14 eyes with FPDR, 15 eyes with APDR without involving the macular and 14 eyes with APDR involving the macular patients in the IVR combined with vitrectomy group. All the eyes in the two groups were regularly operated by the same doctor to complete the vitrectomy. The start and end time of vitrectomy were recorded. The average follow-up time was 10 months. The changes of best corrected visual acuity (BCVA) before and 1, 3 and 6 months after surgery were compared between the two groups. ResultsThe duration of operation of the FPDR type (t=-8.300) and the APDR involving the macular type (t=-2.418) in the IVR combined with vitrectomy group was shorter than vitrectomy only group (P < 0.05). The comparison of duration of operation of the APDR without involving the macular type in the two groups has no statistically significant difference (t=-1.685, P > 0.05). At 1 month after surgery, the comparison of BCVA of the IVR combined vitrectomy group and the vitrectomy only group in APDR involving the macular type has no statistically significant difference (t=0.126, P > 0.05). At 3, 6 months after surgery, the BCVA of the IVR combined vitrectomy group in APDR involving the macular type was significantly better than the BCVA of the vitrectomy only group (t=8.014, 7.808; P < 0.05). At 1, 3, and 6 months after surgery, the BCVA of the IVR combined vitrectomy group in FPDR type (t=3.809, 1.831, 0.600) and APDR without involving the macular type (t=0.003, 1.092, 3.931) compared with pre-treatment, the difference were not statistically significant (P > 0.05); the BCVA in APDR without involving the macular type compared with pre-treatment, the difference was distinctly statistically significant (t=2.940, 4.162, 6.446; P < 0.05); the BCVA in APDR involving the macular type (t=0.953, 1.682, 1.835) compared with pre-treatment, the difference were not statistically significant (P > 0.05). ConclusionPreoperative IVR of PDR can shorten the operation duration and improve the BCVA of APDR involving the macular type.

    Release date: Export PDF Favorites Scan
  • Outcomes of adjuvant intravitreal anti-vascular endothelial growth factor therapy in advanced Coats disease

    ObjectiveTo observe the efficacy of adjuvant intravitreal injection of anti-vascular endothelial growth factor (VEGF) therapy for advanced Coats disease. MethodsThis study is a retrospective case series study. Fourteen patients (14 eyes), presenting Coats Stages 3B and 4 (8 and 6 eyes, respectively) were enrolled. All the patients were treated with adjuvant intravitreal anti-VEGF therapy. The intravitreal anti-VEGF injections varied from 1 to 7, with a median injections of 2.14. In 14 eyes, combined therapy was subretinal fluid drainage in 4 eyes, photocoagulation in 2 eyes, vitrectomy in 8 eyes. The follow-up period was ranged from 4 to 36 months, with a median follow-up of 18.8 months. Visual acuity and retinal reattachment were observed in follow up. ResultsAt last follow up, global suvival was 100.0% with no enucleation performed in any patient because of disease progression. Except for 2 children who were unable to cope with the visual acuity test, visual acuity was improved in 2 patients, stable in 8 patients, and decreased in 2 patients. 5 patients (35.7%) achieved in complete retinal reattachment, 3 patients (21.4%) were succeed in partial retinal reattachment, and the remain 6 patients(42.8%) failed in retinal reattachment. Two patients developed cataract after vitrectomy, and no other adverse reaction was observed during follow-up. ConclusionAnti-VEGF therapy combined with classic treatments in advanced Coats disease can keep or impove the visual acuity in most patients by reducing of subretinal exudation.

    Release date: Export PDF Favorites Scan
  • Intravitreal aflibercept versus photodynamic therapy in Chinese patients with neovascular age-related macular degeneration: outcomes of the SIGHT study

    ObjectiveTo assess the efficacy and safety of intravitreal aflibercept injection (IAI) compared with photodynamic therapy (PDT) in the treatment of Chinese patients with predominantly classic subfoveal choroidal neovascularization (CNV) lesions secondary to neovascular age-related macular degeneration (nAMD).MethodsA randomized, double-blind, multi-center phase-3 clinical trial lasting for 52 weeks (from December 2011 to August 2014). Subjects were randomized in a 3:1 ratio to either IAI group or PDT-to-IAI group. Subjects in the IAI group received 2 mg IAI at baseline and at week 4, 8, 16, 24, 32, 40, 48, with sham injection at week 28, 36. Subjects in the PDT-to-IAI group were forced to receive PDT once at baseline and more time at week 12, 24 if PDT retreatment conditions were met. Sham injections were given in PDT-to-IAI group at baseline and at week 4, 8, 16 and 24, followed by 2 mg IAI at week 28, 32, 36, 40, 48. The primary outcome of efficacy were the change in mean Best Corrected Visual Acuity (BCVA) from baseline to week 28, and that of week 52. Safety evaluation included the percentage of subjects who suffered treatment emergent adverse events (TEAEs).ResultsAmong the 304 subjects enrolled, there were 228 and 76 cases in IAI group and PDT-to-IAI group respectively. At week 28, the changes of mean BCVA in IAI group, PDT-to-IAI group compared to baseline were +14.0, +3.9 letters, respectively. At week 52, the changes of mean BCVA in two groups were +15.2, +8.9 letters respectively with the difference of +6.2 letters (95%CI 2.6−9.9, P=0.000 9). At week 52, the mean foveal retinal thickness in the two groups decreased by −189.6, −170.0 μm, respectively. Subjects with the most BCVA increase in IAI group were those aged <65, and those with active CNV lesion area <50% of total lesion area. The most common TEAEs in IAI group and PDT-to-IAI group are macular fibrosis [11.8% (27/228), 6.6% (5/76)] and BCVA decline [6.6% (15/228), 21.1% (16/76)]. There were 3 cases of arterial thromboembolic events defined in the antiplatelet experimental collaboration group, but all were considered unrelated to interventions.ConclusionsThe efficacy of aflibercept is superior to that of PDT in nAMD patients in China. The therapeutic effect of aflibercept persisted to week 52 in all subjects. The rate of adverse events was consistent with the safety data of aflibercept known before.

    Release date:2019-03-18 02:49 Export PDF Favorites Scan
  • Evaluation of macular visual function in patients with myopic choroidal neovascularization before and after intravitreal injection of conbercept

    ObjectiveTo evaluate the macular visual function of patients with myopic choroidal neovascularization (MCNV) before and after intravitreal injection of conbercept.MethodsA prospective, uncontrolled and non-randomized study. From April 2017 to April 2018, 21 eyes of 21 patients diagnosed as MCNV in Shanxi Eye Hospital and treated with intravitreal injection of conbercept were included in this study. There were 9 males (9 eyes, 42.86%) and 12 females (12 eyes, 57.14%), with the mean age of 35.1±13.2 years. The mean diopter was −11.30±2.35 D and the mean axial length was 28.93±5.68 mm. All patients were treated with intravitreal injection of conbercept 0.05 ml (1+PRN). Regular follow-up was performed before and after treatment, and BCVA and MAIA micro-field examination were performed at each follow-up. BCVA, macular integrity index (MI), mean sensitivity (MS) and fixation status changes before and after treatment were comparatively analyzed. The fixation status was divided into three types: stable fixation, relatively unstable fixation, and unstable fixation. The paired-sample t-test was used to compare BCVA, MI and MS before and after treatment. The x2 test was used to compare the fixation status before and after treatment.ResultsDuring the observation period, the average number of injections was 3.5. The logMAR BCVA of the eyes before treatment and at 1, 3, and 6 months after treatment were 0.87±0.32, 0.68±0.23, 0.52±0.17, and 0.61±0.57, respectively; MI were 89.38±21.34, 88.87±17.91, 70.59±30.02, and 86.76±15.09, respectively; MS were 15.32±7.19, 21.35±8.89, 23.98±11.12, 22.32±9.04 dB, respectively. Compared with before treatment, BCVA (t=15.32, 18.65, 17.38; P<0.01) and MS (t=4.08, 3.50, 4.26; P<0.01) were significantly increased in the eyes 1, 3, and 6 months after treatment. There was no significant difference in the MI of the eyes before treatment and at 1, 3, and 6 months after treatment (t=0.60, 2.42, 2.58; P>0.05). Before treatment and at 1, 3, and 6 months after treatment, the proportion of stable fixation were 28.57%, 38.10%, 38.10%, 33.33%;the proportion of relatively unstable fixation were 47.62%, 47.62%, 52.38%, 57.14% and the proportion of unstable fixation were 23.81%, 14.28%, 9.52%, 9.52%, respectively. The proportion of stable fixation and relatively unstable fixation at 1, 3 and 6 months after treatment were higher than that before treatment, but the difference was not statistically significant (x2=1.82, 1.24, 1.69; P>0.05).ConclusionBCVA and MS are significantly increased in patients with MCNV after intravitreal injection of conbercept.

    Release date:2019-03-18 02:49 Export PDF Favorites Scan
  • Effects of intravitreal ranibizumab for the treatment of retinopathy of prematurity

    ObjectiveTo evaluate the efficacy and safety of intravitreal ranibizumab (IVR) for the treatment of retinopathy of prematurity(ROP). MethodsA total of 57 eyes of 29 premature infants with diagnosis of high-risk pre-threshold, threshold ROP, or aggressive posterior ROP were reviewed and analyzed in the study. The lesions of 18 eyes were located in zoneⅠ, 39 eyes were located in zoneⅡ. All infants in the study received IVR (10 mg/ml, 0.025 ml) as the initial treatment within 24 hours after diagnosis. Follow-up examinations were performed after treatment, every week at the first month, every 2 weeks at the second and third month, every month afterward, until vascularization of zoneⅢwas observed. Follow-up ranged from 16 weeks to 52 weeks, and the average follow-up time was (28.1±11.7) weeks. If the infants didn't respond positively to the treatment or the disease recurred, the additional treatments were applied. 36 eyes (63.2%) received a single injection, whereas 21 eyes (36.8%) received additional treatments. The follow-up examinations included the development of retinal vessels, the ocular or systemic adverse events. ResultsAmong the eyes, the development of peripheral retinal vessels could be observed in 36 eyes (63.2%) which received a single injection; clinical improvement in 11 eye (19.3%) which received repeat injection; stable disease in 10 eyes (17.5%) which received laser therapy. Among the eyes, 18 eyes (31.6%) recurred, including ggressive posterior ROP (14 eyes), threshold ROP (2 eyes) and high-risk pre-threshold ROP (2 eyes). The mean time of recurrence was (5.7±2.1) weeks (range 2.0-8.0 weeks). Three eyes (5.3%) of high-risk pre-threshold, threshold ROP lacked a positive response to the treatment. The lesions were controlled after additional laser given in these eyes. No serious ocular or systemic adverse events associated with the drug or the injection was observed during the follow-up period. ConclusionIVR is safe and effective for most ROP infants. In cases of recurrence or no response, conventional laser treatment or an additional IVR injection were needed.

    Release date: Export PDF Favorites Scan
  • The effect of intravitreal injection of ranibizumab combined with vitrectomy to treat proliferative diabetic retinopathy

    ObjectiveTo observe the clinical effect of intravitreal ranibizumab (IVR) combined with vitrectomy in treating proliferative diabetic retinopathy (PDR). MethodsThis is a prospective non-randomized controlled clinical study. A total of 62 patients (70 eyes) who underwent vitrectomy for PDR were enrolled and divided into IVR group (30 patients, 34 eyes) and control group (32 patients, 36 eyes).IVR group patients received an intravitreal injection of 0.05 ml ranibizumab solution (10 mg/ml) 3 or 5 days before surgery. The follow-up time was 3 to 18 months with an average of (4.5±1.8) months. The surgical time, intraoperative bleeding, iatrogenic retinal breaks, use of silicone oil, the best corrected visual acuity (BCVA) and the incidence of postoperative complications were comparatively analyzed. ResultsThe difference of mean surgical time (t=6.136) and the number of endodiathermy during vitrectomy (t=6.128) between IVR group and control group was statistically significant (P=0.000, 0.036). The number of iatrogenic retinal break in IVR group is 8.8% and control group is 27.8%, the difference was statistically significant (χ2=4.154, P=0.032). Use of silicone oil of IVR group is 14.7% and control group is 38.9%, the difference was statistically significant (χ2=5.171, P=0.023). The incidence of postoperative vitreous hemorrhage in 3 month after surgery was 11.8% and 30.6% respectively in IVR group and control group. The differences were statistically significant (χ2=3.932, P=0.047). The 6 month postoperative mean BCVA of IVR group and control group have all improved than their preoperative BCVA, the difference was statistically significant (t=4.414, 8.234; P=0.000).But there was no difference between the mean postoperative BCVA of two groups (t=0.111, P=0.190). There was no topical and systemic adverse reactions associated with the drug after injection in IVR group. ConclusionsMicroincision vitreoretinal surgery assisted by IVR for PDR shorten surgical time, reduces the intraoperative bleeding and iatrogenic retinal breaks, reduces the use of silicon oil and the postoperative recurrent vitreous hemorrhage. But there was no significant relationship between vision improvement and IVR.

    Release date: Export PDF Favorites Scan
  • Intravitreal injection of ranibizumab and combined treatment for severe Coats disease

    ObjectiveTo observe the efficacy of intravitreal injection of ranibizumab (IVR) and combined treatment for severe Coats disease. MethodsNineteen Coats disease patients (24 eyes) were enrolled in this retrospective non-comparative interventional clinical study. The patients included 17 males and 2 females. The age was ranged from 1 to 42 years old, with an average of (13.05±6.78) years. The patients included 15 children (age ≤14 years old) and 4 adults (age ≥18 years old). There were 13 patients with 3a stage and 6 patients with 3b stage. The treatment methods including IVR only, IVR combined with cryotherapy, IVR combined with cryotherapy and sclerotomy to drain subretinal fluid, IVR combined with vitrectomy. Treatments were repeated if it was necessary at the first day, the first week and the first month after injection. The interval between treatments was ≥1 month. Eleven patients (57.9%) underwent one treatment, 3 patients (15.8%) underwent 2 treatments, 3 patients (15.8%) underwent 3 treatments, 2 patients (10.5%) underwent 4 treatments. The treatment frequency including 22 times of IVR only, 6 times of IVR combined with cryotherapy, 5 times of IVR combined with cryotherapy and sclerotomy to drain subretinal fluid, 1 time of IVR combined with vitrectomy. The follow-up period was ranged from 6 to 36 months, with an average of (19.11±7.05) months. Visual acuity, retinal reattachment and ocular adverse events were observed. ResultsThree children (15.8%) were failing to test the visual acuity. Visual acuity was improved in 2 patients (10.5%), stable in 13 patients (68.4%) and decreased in 1 patient (5.3%). Three patients (15.8%) achieved totally retinal reattachment after treatment, while 16 patients (84.2%) achieved partially retinal reattachment. One patient had vitreous hemorrhage. One patient had neovascular glaucoma. ConclusionIVR and combined treatment were effective for severe Coats disease.

    Release date: Export PDF Favorites Scan
  • Effect of different administration of conbercept on choroidal neovasculature in patients with pathological myopia

    ObjectiveTo observe the efficacy of different administration of conbercept on choroidal neovasculature (CNV) in patients with pathological myopia (PM).MethodsA retrospective case-control study. From June 2012 to June 2017, 57 patients (61 eyes) with PM-CNV diagnosed in the Ophthalmology Department of General Hospital of Central Theater Command were included in this study. All patients underwent BCVA, intraocular pressure, refractive index, slit lamp microscope, FFA, OCT examination and axial length (AL) measurement. An international standard vision chart was used in the BCVA test, which was converted to logMAR vision. According to the initial treatment plan, the patients were divided into 1+PRN treatment group (group A) and 3+PRN treatment group (group B), with 27 patients (31 eyes) and 30 patients (30 eyes), respectively. There was no significantly statistical difference in baseline data between the two groups (P>0.05). The eyes was injected with 10 mg/ml of conbercept 0.05 ml (including conbercept 0.5 mg). After completion of initial treatment, on-demand treatment was performed according to repeated treatment standards. The average follow-up time was 30.8 months. The time point for curative effect determination was 24 months after treatment. The frequency and recurrence rate of vitreous cavity injections in the two groups of patients and the changes of BCVA, central macular thickness (CMT), diopter and AL were compared and observed. Continuous variables were compared between groups by independent sample t test. Categorical variables were compared by χ2 test. logMAR BCVA and injection frequency were compared by Wilcoxon rank test. Comparison of CMT before and after treatment was performed by paired t test.ResultsAfter 24 months, the number of intravitreal injections in group A and group B were 3.94±1.88 and 4.83±1.72, respectively, with statistically significant difference (Z=-2.182, P=0.029). After completion of initial treatment, the number of retreatments in group A and group B were 2.94±1.88 and 1.83±1.72, respectively, with significantly statistical different (Z=-2.330, P=0.020). The CNV recurrence rates were 38.71% and 13.33%, respectively, with statistically significant difference (χ2=5.074, P=0.024). Compared with prior treatment, the average BCVA at 1, 3, 6, 12, and 24 months after treatment significantly increased in group A and B (Group A: Z=5.634, 5.367, 5.532, 6.344, 6.135l; P<0.05. Group B: Z=5.809, 5.090, 5.341, 5.939, 8.103; P<0.05). At 1, 3, 6, and 12 months after treatment, there was no statistically significant difference in the average BCVA of the two groups (Z=-0.966, -0.932, -0.523, -1.759; P=0.334, 0.351, 0.601,0.079); the difference was statistically significant at 24 months (Z=-2.525, P=0.012). Compared with CMT before treatment, the difference in the average CMT reduction of the eyes in groups A and B was statistically significant at 1, 3, 6, 12, and 24 months (Group A: t=4.691, 2.624, 2.121, 1.921, 2.237; P<0.05. Group B: t=4.947, 4.554, 5.290, 5.567, 5.314; P<0.05); the average CMT comparison between the two groups was not statistically significant (P=0.457, 0.871, 0.505, 0.333, 0.798). During the follow-up period, there were no ocular complications and systemic adverse reactions.ConclusionsDifferent administration methods for the treatment of PM-CNV by intravitreal injection of conbercept are safe and effective, which can effectively improve BCVA and reduce CMT. Total injection of 3+PRN is more than 1+PRN. However, the injections of retreatment and CNV recurrence rate is lower, and the final follow-up vision is better.

    Release date:2020-09-22 04:09 Export PDF Favorites Scan
7 pages Previous 1 2 3 ... 7 Next

Format

Content