Aiming at motion artifacts and off-resonance artifacts in multi-shot diffusion magnetic resonance imaging (MRI), we proposed a joint correction method in this paper to correct the two kinds of artifacts simultaneously without additional acquisition of navigation data and field map. We utilized the proposed method using multi-shot variable density spiral sequence to acquire MRI data and used auto-focusing technique for image deblurring. We also used direct method or iterative method to correct motion induced phase errors in the process of deblurring. In vivo MRI experiments demonstrated that the proposed method could effectively suppress motion artifacts and off-resonance artifacts and achieve images with fine structures. In addition, the scan time was not increased in applying the proposed method.
Abdominal imaging is one of the important clinical applications of magnetic resonance imagining, but image degradation due to respiratory motion remains a major problem. Retrospective respiratory navigator gating technique is an effective approach to alleviate such degradation but is subject to long scan time and low signal-to-noise ratio (SNR) efficiency. In this study, a modified retrospective navigator gating technique with variable over-sampling ratio acquisition and weighted average reconstruction algorithm is presented. Experiments in phantom and the imaging results of seven volunteers demonstrated that the proposed method provided an enhanced SNR and reduced ghost-to-image ratio compared to the conventional method. The proposed method can also be used to reduce imaging time while maintaining comparable image quality.
Photoacoustic imaging (PAI) is a rapidly developing hybrid biomedical imaging technology, which is capable of providing structural and functional information of biological tissues. Due to inevitable motion of the imaging object, such as respiration, heartbeat or eye rotation, motion artifacts are observed in the reconstructed images, which reduce the imaging resolution and increase the difficulty of obtaining high-quality images. This paper summarizes current methods for correcting and compensating motion artifacts in photoacoustic microscopy (PAM) and photoacoustic tomography (PAT), discusses their advantages and limits and forecasts possible future work.