west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "motor imagery" 21 results
  • Study on feature modulation of electroencephalogram induced by motor imagery under multi-modal stimulation

    Event-related desynchronization (ERD) is the basic feature of electroencephalogram (EEG), and the brain-computer interface based on motor imagery (MI-BCI) with the foundation of the analysis of ERD is of great significance in motor function recovery. The valid ERD characteristics extracted from EEG are the key to the performance of the BCI, so the study of which kind of stimulation mode can prompt subjects to generate more obvious characteristics of ERD is crucial. Four different stimulation modes are designed in this paper, and the effects of motion imagery tasks under static text stimulation, grip video stimulation, serial motion video stimulation of fingers as well as serial motion video stimulation of fingers with sound on the characteristics of ERD are analyzed. Combining the analysis of time-frequency spectrum, the power spectral density curve, ERD value and brain topographic map, it is shown that the ERD under serial motion video stimulation of fingers and serial motion video stimulation of fingers with sound modes is much stronger and has wider range of activation, and the BCI based on the analysis of ERD will have a better effect on practical application. As a result, the recognition and acceptance of the users of BCI system are improved in some extent.

    Release date:2018-08-23 03:47 Export PDF Favorites Scan
  • Research on performance of motor-imagery-based brain-computer interface in different complexity of Chinese character patterns

    The traditional paradigm of motor-imagery-based brain-computer interface (BCI) is abstract, which cannot effectively guide users to modulate brain activity, thus limiting the activation degree of the sensorimotor cortex. It was found that the motor imagery task of Chinese characters writing was better accepted by users and helped guide them to modulate their sensorimotor rhythms. However, different Chinese characters have different writing complexity (number of strokes), and the effect of motor imagery tasks of Chinese characters with different writing complexity on the performance of motor-imagery-based BCI is still unclear. In this paper, a total of 12 healthy subjects were recruited for studying the effects of motor imagery tasks of Chinese characters with two different writing complexity (5 and 10 strokes) on the performance of motor-imagery-based BCI. The experimental results showed that, compared with Chinese characters with 5 strokes, motor imagery task of Chinese characters writing with 10 strokes obtained stronger sensorimotor rhythm and better recognition performance (P < 0.05). This study indicated that, appropriately increasing the complexity of the motor imagery task of Chinese characters writing can obtain stronger motor imagery potential and improve the recognition accuracy of motor-imagery-based BCI, which provides a reference for the design of the motor-imagery-based BCI paradigm in the future.

    Release date:2021-08-16 04:59 Export PDF Favorites Scan
  • Three-class Motor Imagery Classification Based on Optimal Sub-band Features of Independent Components

    In the study of the scalp electroencephalogram (EEG)-based brain-computer interface (BCI), individual differences and complex background noise are two main factors which affect the stability of BCI system. For different subjects, therefore, optimization of BCI system parameters is necessary, including the optimal designing of temporal and spatial filters parameters as well as the classifier parameters. In order to improve the accuracy of BCI system, this paper proposes a new BCI information processing method, which combines the optimization design of independent component analysis spatial filter (ICA-SF) with the multiple sub-band features of EEG signals. The four subjects' three-class motor imagery EEG (MI-EEG) data collected in different periods were analyzed with the proposed method. Experimental results revealed that, during the inner and outer cross-validation of single subject as well as the subject-to-subject validation, the proposed multiple sub-band method always had higher average classification accuracy compared to those with single-band method, and the maximum difference could achieve 6.08% and 5.15%, respectively.

    Release date: Export PDF Favorites Scan
  • Progress of classification algorithms for motor imagery electroencephalogram signals

    Motor imagery (MI), motion intention of the specific body without actual movements, has attracted wide attention in fields as neuroscience. Classification algorithms for motor imagery electroencephalogram (MI-EEG) signals are able to distinguish different MI tasks based on the physiological information contained by the EEG signals, especially the features extracted from them. In recent years, there have been some new advances in classification algorithms for MI-EEG signals in terms of classifiers versus machine learning strategies. In terms of classifiers, traditional machine learning classifiers have been improved by some researchers, deep learning and Riemannian geometry classifiers have been widely applied as well. In terms of machine learning strategies, ensemble learning, adaptive learning, and transfer learning strategies have been utilized to improve classification accuracies or reach other targets. This paper reviewed the progress of classification algorithms for MI-EEG signals, summarized and evaluated the existing classifiers and machine learning strategies, to provide new ideas for developing classification algorithms with higher performance.

    Release date:2021-12-24 04:01 Export PDF Favorites Scan
  • A Novel Channel Selection Method for Brain-computer Interface Based on Relief-SBS

    Regarding to the channel selection problem during the classification of electroencephalogram (EEG) signals, we proposed a novel method, Relief-SBS, in this paper. Firstly, the proposed method performed EEG channel selection by combining the principles of Relief and sequential backward selection (SBS) algorithms. And then correlation coefficient was used for classification of EEG signals. The selected channels that achieved optimal classification accuracy were considered as optimal channels. The data recorded from motor imagery task experiments were analyzed, and the results showed that the channels selected with our proposed method achieved excellent classification accuracy, and also outperformed other feature selection methods. In addition, the distribution of the optimal channels was proved to be consistent with the neurophysiological knowledge. This demonstrates the effectiveness of our method. It can be well concluded that our proposed method, Relief-SBS, provides a new way for channel selection.

    Release date: Export PDF Favorites Scan
  • Pretreatment Research Based on Left and Right Hand Motor Imagery for Single-channel Electroencephalogram

    Most of electroencephalogram (EEG) acquired by multi-channels is difficult to be applied to the single-channel brain-computer interface (BCI) in the EEG analysis method based on left and right hand motor imagery. The present research applied an improved independent component analysis (ICA) method to realize pretreatment of the EEG effectively. Firstly, data drift was removed through linear drift correction. Secondly, the number of virtual channels were increased by applying delayed window data and some EEG artifacts which are namely electrooculogram (EOG) and electrocardiogram (ECG) were removed by ICA. Finally, the average instantaneous energy characteristics were calculated and classified through the instantaneous amplitude which was solved by applying Hilbert-Huang transform (HHT). The experiment proves that the method completes the EEG pretreatment and improves classification ratio of single-channel EEG, and lays a foundation of single-channel and portable BCI.

    Release date:2016-10-24 01:24 Export PDF Favorites Scan
  • Control of intelligent car based on electroencephalogram and neurofeedback

    To improve the performance of brain-controlled intelligent car based on motor imagery (MI), a method based on neurofeedback (NF) with electroencephalogram (EEG) for controlling intelligent car is proposed. A mental strategy of MI in which the energy column diagram of EEG features related to the mental activity is presented to subjects with visual feedback in real time to train them to quickly master the skills of MI and regulate their EEG activity, and combination of multi-features fusion of MI and multi-classifiers decision were used to control the intelligent car online. The average, maximum and minimum accuracy of identifying instructions achieved by the trained group (trained by the designed feedback system before the experiment) were 85.71%, 90.47% and 76.19%, respectively and the corresponding accuracy achieved by the control group (untrained) were 73.32%, 80.95% and 66.67%, respectively. For the trained group, the average, longest and shortest time consuming were 92 s, 101 s, and 85 s, respectively, while for the control group the corresponding time were 115.7 s, 120 s, and 110 s, respectively. According to the results described above, it is expected that this study may provide a new idea for the follow-up development of brain-controlled intelligent robot by the neurofeedback with EEG related to MI.

    Release date:2018-02-26 09:34 Export PDF Favorites Scan
  • Channel Selection for Multi-class Motor Imagery Based on Common Spatial Pattern

    High-density channels are often used to acquire electroencephalogram (EEG) spatial information in different cortical regions of the brain in brain-computer interface (BCI) systems. However, applying excessive channels is inconvenient for signal acquisition, and it may bring artifacts. To avoid these defects, the common spatial pattern (CSP) algorithm was used for channel selection and a selection criteria based on norm-2 is proposed in this paper. The channels with the highest M scores were selected for the purpose of using fewer channels to acquire similar rate with high density channels. The DatasetⅢa from BCI competition 2005 were used for comparing the classification accuracies of three motor imagery between whole channels and the selected channels with the present proposed method. The experimental results showed that the classification accuracies of three subjects using the 20 channels selected with the present method were all higher than the classification accuracies using all 60 channels, which convinced that our method could be more effective and useful.

    Release date: Export PDF Favorites Scan
  • Recognition method of single trial motor imagery electroencephalogram signal based on sparse common spatial pattern and Fisher discriminant analysis

    This paper aims to realize the decoding of single trial motor imagery electroencephalogram (EEG) signal by extracting and classifying the optimized features of EEG signal. In the classification and recognition of multi-channel EEG signals, there is often a lack of effective feature selection strategies in the selection of the data of each channel and the dimension of spatial filters. In view of this problem, a method combining sparse idea and greedy search (GS) was proposed to improve the feature extraction of common spatial pattern (CSP). The improved common spatial pattern could effectively overcome the problem of repeated selection of feature patterns in the feature vector space extracted by the traditional method, and make the extracted features have more obvious characteristic differences. Then the extracted features were classified by Fisher linear discriminant analysis (FLDA). The experimental results showed that the classification accuracy obtained by proposed method was 19% higher on average than that of traditional common spatial pattern. And high classification accuracy could be obtained by selecting feature set with small size. The research results obtained in the feature extraction of EEG signals lay the foundation for the realization of motor imagery EEG decoding.

    Release date:2020-02-18 09:21 Export PDF Favorites Scan
  • An empirical study on the behavior of motor imagery based on mental rotation

    Mental rotation cognitive tasks based on motor imagery (MI) have excellent predictability for individual’s motor imagery ability. In order to explore the relationship between motor imagery and behavioral data, in this study, we asked 10 right-handed male subjects to participate in the experiments of mental rotation tasks based on corresponding body parts pictures, and we therefore obtained the behavioral effects according to their reaction time (RT) and accuracy (ACC). Later on, we performed Pearson correlation analysis between the behavioral data and the scores of the Movement Imagery Questionnaire-Revised(MIQ-R). For each subject, the results showed significant angular and body location effect in the process of mental rotation. For all subjects, the results showed that there were correlations between the behavioral data and the scores of MIQ-R. Subjects who needed the longer reaction time represented lower motor imagery abilities in the same test, and vice versa. This research laid the foundation for the further study on brain electrophysiology in the process of mental rotation based on MI.

    Release date:2017-04-13 10:03 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content