ObjectiveTo investigate the mechanism of muscle-derived cells (MDCs) in repairing sciatic nerve defects in mice by observing the early growth of damaged peripheral nerves.MethodsThe hind limb skeletal muscles of mice carrying enhanced green fluorescent protein (EGFP) was collected to extract and culture EGFP-MDCs to P1 generation for later experiments. Five-mm-long nerve defects were created in the right sciatic nerves of C57BL/6 mice to establish a peripheral nerve defect model. The two stumps of sciatic nerve were bridged with 7-mm-long polyurethane (PUR) conduit. For the MDC group, EGFP-MDCs were injected into the PUR conduit. The PUR group without EGFP-MDCs was used as the negative control group. At 1 and 2 weeks after operation, the proximal and distal nerve stumps of the surgical side were collected to generally observe the early growth of nerve. Immunofluorescence staining of S100β, the marker of Schwann cells, was performed on longitudinal frozen sections of nerve tissues to calculate the maximum migration distance of Schwann cells, and observe the source of the Schwann cells expressing S100β. Immunofluorescence staining of phosphorylated erb-b2 receptor tyrosine kinase 2 (p-ErbB2) and phosphorylated focal adhesion kinase (p-FAK) in transverse frozen sections of nerve tissue was performed to calculate the positive rates of both proteins.ResultsThe general observation showed that the proximal and distal stumps of the surgical side in PUR group were not connected at 1 and 2 weeks after operation, while the bilateral nerve stumps in the MDC group were connected at 2 weeks after operation. Immunofluorescence staining showed that the Schwann cells expressing S100β in proximal and distal nerve stumps of PUR group and MDC group was not connected at 1 week after operation. At 2 weeks after operation, the Schwann cells expressing S100β in the two nerve stumps of the MDC group were connected, but not in the PUR group. At 2 weeks after operation, the sum of the maximum migration distance of Schwann cells in the regenerated nerve in both two groups was significantly increased when compared with that in each group at 1 week after operation, and that of MDC group was significantly higher than that in the PUR group at both 1 and 2 weeks after operation, the differences were all significant (P<0.05). At 1 week after operation, the positive rates of p-ErbB2 and p-FAK in the proximal nerve stump of MDC group were significantly higher than those in PUR group (P<0.05). There was no significant difference in the positive rate of p-ErbB2 of proximal stump between the two groups at 2 weeks after operation (t=0.327, P=0.747), while the positive rate of p-FAK of MDC group was significantly higher than that of PUR group (t=4.470, P=0.000). At 1 and 2 weeks after operation, the positive rates of p-ErbB2 and p-FAK in the distal stump of MDC group were significantly higher than those in PUR group (P<0.05). At 1 and 2 weeks after operation, part of Schwann cells expressing S100β, which were derived from EGFP-MDCs, could be observed in the regenerated nerves of MDC group.ConclusionMDCs can promote the phosphorylation of ErbB2 and FAK in the nerve stumps of mice, and promote the migration of Schwann cells. MDCs can be differentiated into cells expressing the Schwann cell marker S100β, or as other cellular components, to involve in the early repair of peripheral nerves.
Objective To Investigate the effects of lithocholic acid (LCA) on the balance between osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Methods Twelve 10-week-old SPF C57BL/6J female mice were randomly divided into an experimental group (undergoing bilateral ovariectomy) and a control group (only removing the same volume of adipose tissue around the ovaries), with 6 mice in each group. The body mass was measured every week after operation. After 4 weeks post-surgery, the weight of mouse uterus was measured, femur specimens of the mice were taken for micro-CT scanning and three-dimensional reconstruction to analyze changes in bone mass. Tibia specimens were taken for HE staining to calculate the number and area of bone marrow adipocytes in the marrow cavity area. ELISA was used to detect the expression of bone turnover markers in the serum. Liver samples were subjected to real-time fluorescence quantitative PCR (RT-qPCR) to detect the expression of key genes related to bile acid metabolism, including cyp7a1, cyp7b1, cyp8b1, and cyp27a1. BMSCs were isolated by centrifugation from 2 C57BL/6J female mice (10-week-old). The third-generation cells were exposed to 0, 1, 10, and 100 μmol/L LCA, following which cell viability was evaluated using the cell counting kit 8 assay. Subsequently, alkaline phosphatase (ALP) staining and oil red O staining were conducted after 7 days of osteogenic and adipogenic induction. RT-qPCR was employed to analyze the expressions of osteogenic-related genes, namely ALP, Runt-related transcription factor 2 (Runx2), and osteocalcin (OCN), as well as adipogenic-related genes including Adiponectin (Adipoq), fatty acid binding protein 4 (FABP4), and peroxisome proliferator-activated receptor γ (PPARγ). Results Compared with the control group, the body mass of the mice in the experimental group increased, the uterus atrophied, the bone mass decreased, the bone marrow fat expanded, and the bone metabolism showed a high bone turnover state. RT-qPCR showed that the expressions of cyp7a1, cyp8b1, and cyp27a1, which were related to the key enzymes of bile acid metabolism in the liver, decreased significantly (P<0.05), while the expression of cyp7b1 had no significant difference (P>0.05). Intervention with LCA at concentrations of 1, 10, and 100 μmol/L did not demonstrate any apparent toxic effects on BMSCs. Furthermore, LCA inhibited the expressions of osteogenic-related genes (ALP, Runx2, and OCN) in a dose-dependent manner, resulting in a reduction in ALP staining positive area. Concurrently, LCA promoted the expressions of adipogenic-related genes (Adipoq, FABP4, and PPARγ), and an increase in oil red O staining positive area. Conclusion After menopause, the metabolism of bile acids is altered, and secondary bile acid LCA interferes with the balance of osteogenic and adipogenic differentiation of BMSCs, thereby affecting bone remodelling.
ObjectiveTo explore the effect and mechanism of directive differentiation of microglia by SN50 on hypoxia-caused neurons injury in mice.MethodsThe microglia were isolated and purified from brain tissue of new-born BALB/c mice through differential velocity adherent and vibration technique. The quantity of the microglia was identified by immunofluorescence staining of inducible nitric oxide synthetase (iNOS) and ionized calcium binding adapter molecule 1 (Iba1) and real-time fluorescence quantitative PCR (qRT-PCR) for special expression genes [iNOS, CD32, and interlenkin 10 (IL-10)]. Then the microglia were cultured with SN50, and the expressions of nuclear factor κB (NF-κB), differentiation-related genes (iNOS, CD11b, IL-10, and CD206), and apoptosis were detected by Western blot, qRT-PCR, and flow cytometry, respectively. The hypoxia model of neuron was established, and the cell apoptosis was evaluated by MTT after 0, 2, 6, 12, 24, and 48 hours of anoxic treatment. The apoptosis related markers (Bcl-2 and Caspase-3) were measured by Western blot and flow cytometry. In addition, the neurons after anoxic treatment were co-cultured with SN50 treated microglia (experimental group) and normal microglia (control group) for 24 hours. And the cell viability and apoptosis related markers (Bcl-2 and Caspase-3) were also measured.ResultsImmunofluorescence staining and qRT-PCR analysis showed that the cells expressed the specific proteins and genes of microglia. Compared with the normal microglia, the relative expressions of NF-κB protein and iNOS and CD11b mRNAs in the microglia treated with SN50 significantly decreased (P<0.05), the relative expressions of IL-10 and CD206 mRNAs significantly increased (P<0.05), and the cell apoptosis rate had no significant change (P>0.05). Compared with the normal neurons, the cell viability, the relative expressions of Bcl-2 and Caspase-3 proteins after anoxic treatment significantly decreased (P<0.05), while the relative expressions of cleaved-Caspase-3 protein and cell apoptosis rate of neurons significantly increased (P<0.05). In the co-culture system, the cell viability, the relative expressions of Bcl-2 and Caspase-3 proteins were significantly higher in experimental group than those in control group (P<0.05), while the relative expressions of cleaved-Caspase-3 protein and cell apoptosis rate were significantly lower in experimental group than those in control group (P<0.05).ConclusionSN50 can induce the microglia differentiation into M2 type through NF-κB pathway. The SN50-induced microglia can protect neurons from hypoxic injury.
Objective To investigate the effects of adipose-derived stem cells (ADSCs) and endothelial cells (ECs) on the survival and neovascularization of fat tissue transplants. Methods The ADSCs were isolated by collagenase digestion from the adipose tissues voluntarily donated by the patients undergoing mastectomy, and subcultured. The passage 3 ADSCs were used for subsequent experiments. The residual fat tissues were used to prepare fat particles (FPs). The human umbilical vein endothelial cells (HUVECs) were used as ECs for subsequent experiments. Eighty healthy male nude mice, aged 4-6 weeks, were randomly divided into 4 groups (n=20). The mice were received subcutaneous injection at the dorsum of 1 mL FPs+0.3 mL normal saline (NS) in control group, 1 mL FPs+2×106 ECs+0.3 mL NS in ECs group, 1 mL FPs+2×106 ADSCs+0.3 mL NS in ADSCs group, and 1 mL FPs+1×106 ECs+1×106 ADSCs+0.3 NS in ADSCs+ECs group. General observations of the injection sites were performed, and the survival of the mice was recorded. At 2, 4, 8, and 12 weeks after injection, grafted fat tissues were firstly assessed by ultrasonography, then they were collected for volume measurement (water displacement method) and histology observation (HE staining and immunofluorescence staining). Results All mice survived until the end of experiment. At each time point, no significant difference was noted between groups in ultrasonography assay. There was no significant blood flow signal in the grafted fat tissues, or cysts, calcification, solid occupying in recipient area. Generally, the volume of grafted fat tissues decreased with time in all groups. Specifically, the volumes of grafted fat tissues were larger in ADSCs group and ADSCs+ECs group than that in control group and ECs group (P<0.05) at each time point, and in ADSCs group than in ADSCs+ECs group (P<0.05) at 8 and 12 weeks. HE staining showed that all groups had similar tendencies in general histology changes, and remodeling in ADSCs group was the fastest than in the other groups. By immunofluorescence staining for neovascularization, the new vessels in all groups were increasing with time. The vessel densities were higher in ECs group, ADSCs group, and ADSCs+ECs group than in control group (P<0.05) at each time point, in ADSCs group than in ECs group and ADSCs+ECs group (P<0.05) at 4 weeks, in ADSCs group and ADSCs+ECs group than in ECs group (P<0.05) at 8 and 12 weeks. Conclusion ADSCs can significantly increase the survival of transplanted fat tissue, which may be related to promoting the neovascularization.
Objective Col I A1 antisense oligodeoxyneucleotide (ASODN) has inhibitory effect on collagen synthesis in cultured human hypertrophic scar fibroblasts. To investigate the effects of intralesional injection of Col I A1 ASODN on collagen synthesis in human hypertrophic scar transplanted nude mouse model. Methods The animal model of humanhypertrophic scar transplantation was established in the 60 BALB/c-nunu nude mice (specific pathogen free grade, weighing about 20 g, and aged 6-8 weeks) by transplanting hypertrophic scar without epidermis donated by the patients into the interscapular subcutaneous region on the back, with 1 piece each mouse. Fifty-eight succeed models mice were randomly divided into 3 groups in accordance with the contents of injection. In group A (n=20): 5 μL Col I A1 ASODN (3 mmol/L), 3 μL l iposome, and 92 μL Opti-MEM I; in group B (n=20): 3 μL l iposome and 97 μL Opti-MEM I; in group C (n=18): only 100 μL Opti-MEM I. The injection was every day in the first 2 weeks and once every other day thereafter. The scar specimens were harvested at 2, 4, and 6 weeks after injection, respectively and the hardness of the scar tissue was measured. The collagens type I and III in the scar were observed under polarized l ight microscope after sirius red staining. The ultrastructures of the scar tissues were also observed under transmission electronic microscope (TEM). Additionally, the Col I A1 mRNAs expression was determined by RT-PCR and the concentrations of Col I A1 protein were measured with ELISA method. Results Seventeen mice died after intralesional injection. Totally 40 specimens out of 41 mice were suitable for nucleic acid and protein study, including 14 in group A, 13 in group B, and 14 in group C. The hardness of scars showed no significant difference (P gt; 0.05) among 3 groups at 2 weeks after injection, whereas the hardness of scars in group A was significantly lower than those in groups B and C at 4 and 6 weeks (P lt; 0.05), and there was no significant difference between groups B and C (P gt; 0.05). The collagen staining showed the increase of collagentype III in all groups, especially in group A with a regular arrangement of collagen type I fibers. TEM observation indicated that there was degeneration of fibroblasts and better organization of collagen fibers in group A, and the structures of collagen fibers in all groups became orderly with time. The relative expressions of Col I A1 mRNA and the concentrations of Col I A1 protein at 2 and 4 weeks after injection were significant difference among 3 groups (P lt; 0.05), and they were significantly lower in group A than in groups B and C (P lt; 0.05) at 6 weeks after injection, but no significant difference was found between groups B and C (P gt; 0.05). Conclusion Intralesional injection of Col I A1 ASODN in the nude mice model with human hypertrophic scars can inhibit the expression of Col I A1 mRNA and collagen type I, which enhances the mature and softening of the scar tissue. In this process, l iposome shows some assistant effect.
摘要:目的:探讨表达吲哚胺2,3二氧化酶(IDO)的KC对同种异体小鼠移植皮片存活时间的影响及其机制。方法:构建BABL/c →C57BL/6的皮肤移植模型,分别于移植术后第2、7、14天输注KC,于移植术后第7天每组各取2只皮瓣行HE染色和TUNEL以检测淋巴细胞浸润和凋亡情况。KaplanMeier对数秩检验对各组进行生存分析。结果:输入表达IDO和FasL的KC能明显延长BABL/c →C57BL/6皮肤移植模型中皮肤移植物的存活时间,1-甲基色氨酸能阻断此效应。IFNγ组皮瓣浸润淋巴细胞的凋亡率较高(Plt;0.05)。结论:表达IDO和FasL的KC在体内能明显延长同种异体小鼠皮片的存活时间,IDO在KC维持外周免疫耐受中发挥重要作用。Abstract: Objective: To investigate kupffer cells(KC) expressing indoleamine 2,3dioxygenase(IDO) on the survival of grafted skin in mouse and its underlying mechanism. Methods: BABL/c skin was transplanted to C57BL/6. Donor KC were injected i.v. at days 2,7, 14 before transplantation. HE and TUNELAP were used to identify infiltrating cells and apoptotic cells in section of skin allografts from 7 days posttransplantation respectively. The survival rate of recipients among groups were analyzed by Logrank test. Results: Injection of KC expressing IDO and FasL from BABL/c mice into C57BL/6 could prolong a skin graft survival from the donor, but 1methyltryptophan could block the effect in vivo. The apoptosis rate of lymphocyte among skin graft in IFNγ group is more than other group(Plt;0.05). Conclusion: IDO and FasLexpressing KC from the donor of mouse can significantly prolong the skin graft survival. IDO may play an important role in KC to induce immune tolerance.
Objective To investigate the mechanism of vascular stromal fraction (SVF) at the early stage after aspirated fat transplantation. Methods Fat was harvested from 5 cases of women undergoing abdominal liposuction operation, and SVF was isolated. Aspirated fat with (group B) or without (group A) SVF was injected subcutaneously into the back of nude mice, and the grafts were harvested at 1, 3, 5, and 7 days. Graft wet weight was measured; and immunohistochemical method (CD31) was performed and the secretion of vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) were qnantified by Western blot assay. Results The wet weight of transplanted adipose tissue showed an increasing tendency in groups A and B with time, and no significant difference was found between groups A and B (P gt; 0.05). At 1 and 3 days after transplantation, no CD31 positive cells was seen in 2 groups; the CD31 positive cells of group B were significantly more than those of group A at 5 and 7 days (P lt; 0.05), and the CD31 positive cells at 7 days were significantly more than those at 5 days in 2 groups (P lt; 0.05). Western blot test showed that VEGF expression reached peak at 3 days , then decreased gradually; the expression of VEGF protein in group B was significantly higher than that in group A at 1, 3, and 5 days (P lt; 0.05). The expression of HGF protein in groups A and B remained at a high level within 5 days, but it tended to decrease at 7 days, which was significantly higher in group B than that in group A (P lt; 0.05). Conclusion SVF can enhance angiogenesis by secretion of growth factors at the early stage after aspirated fat transplantation.
ObjectiveTo investigate the effects of adipose-derived stem cell released exosomes (ADSC-Exos) on wound healing in diabetic mice.MethodsThe ADSCs were isolated from the adipose tissue donated by the patients and cultured by enzymatic digestion. The supernatant of the 3rd generation ADSCs was used to extract Exos (ADSC-Exos). The morphology of ADSC-Exos was observed by transmission electron microscopy. The membrane-labeled proteins (Alix and CD63) were detected by Western blot, and the particle size distribution was detected by nanoparticle tracking analyzer. The fibroblasts were isolated from the skin tissue donated by the patients and cultured by enzymatic digestion. The 5th generation fibroblasts were cultured with PKH26-labeled ADSC-Exos, and observed by confocal fluorescence microscopy. The effects of ADSC-Exos on proliferation and migration of fibroblasts were observed with cell counting kit 8 (CCK-8) and scratch method. Twenty-four 8-week-old Balb/c male mice were used to prepare a diabetic model. A full-thickness skin defect of 8 mm in diameter was prepared on the back. And 0.2 mL of ADSC-Exos and PBS were injected into the dermis of the experimental group (n=12) and the control group (n=12), respectively. On the 1st, 4th, 7th, 11th, 16th, and 21st days, the wound healing was observed and the wound healing rate was calculated. On the 7th, 14th, and 21st days, the histology (HE and Masson) and CD31 immunohistochemical staining were performed to observe the wound structure, collagen fibers, and neovascularization.ResultsADSC-Exos were the membranous vesicles with clear edges and uniform size; the particle size was 40-200 nm with an average of 102.1 nm; the membrane-labeled proteins (Alix and CD63) were positive. The composite culture observation showed that ADSC-Exos could enter the fibroblasts and promote the proliferation and migration of fibroblasts. Animal experiments showed that the wound healing of the experimental group was significantly faster than that of the control group, and the wound healing rate was significantly different at each time point (P<0.05). Compared with the control group, the wound healing of the experimental group was better. There were more microvessels in the early healing stage, and more deposited collagen fibers in the late healing stage. There were significant differences in the length of wound on the 7th, 14th, and 21st days, the number of microvessels on the 7th and 14th days, and the rate of deposited collagen fibers on the 14th and 21st days between the two groups (P<0.05).ConclusionADSC-Exos can promote the wound healing in diabetic mice by promoting angiogenesis and proliferation and migration of fibroblasts and collagen synthesis.
In the development of radio frequency (RF) coils for better quality of the mini-type permanent magnetic resonance imager for using in the small animal imaging, the solenoid RF coil has a special advantage for permanent magnetic system based on analyses of various types of RF coils. However, it is not satisfied for imaging if the RF coils are directly used. By theoretical analyses of the magnetic field properties produced from the solenoid coil, the research direction was determined by careful studies to raise further the uniformity of the magnetic field coil, receiving coil sensitivity for signals and signal-to-noise ratio (SNR). The method had certain advantages and avoided some shortcomings of the other different coil types, such as, birdcage coil, saddle shaped coil and phased array coil by using the alloy materials (from our own patent). The RF coils were designed, developed and made for keeled applicable to permanent magnet-type magnetic resonance imager, multi-coil combination-type, single-channel overall RF receiving coil, and applied for a patent. Mounted on three instruments (25 mm aperture, with main magnetic field strength of 0.5 T or 1.5 T, and 50 mm aperture, with main magnetic field strength of 0.48 T), we performed experiments with mice, rats, and nude mice bearing tumors. The experimental results indicated that the RF receiving coil was fully applicable to the permanent magnet-type imaging system.
Objective To study the effects of morroniside (MOR) on the proliferation and osteogenic differentiation of mouse MC3T3-E1 cells. MethodsThe 4th generation MC3T3-E1 cells were randomly divided into 6 groups: control group (group A), MOR low dose group (10 μmol/L, group B), MOR medium-low dose group (20 μmol/L, group C), MOR medium dose group (40 μmol/L, group D), MOR medium-high dose group (80 μmol/L, group E), and MOR high dose group (100 μmol/L, group F). The proliferation activity of each group was detected by cell counting kit 8 (CCK-8) assay; the bone differentiation and mineralized nodule formation of each group were detected by alizarin red staining; real-time fluorescence quantitative PCR (RT-qPCR) was performed to detect cyclin-dependent kinase inhibitor 1A (P21), recombinant Cyclin D1 (CCND1), proliferating cell nuclear antigen (PCNA), alkaline phosphatase (ALP), collagen type Ⅰ (COL-1), bone morphogenetic protein 2 (BMP-2), and adenosine A2A receptor (A2AR) mRNA expressions; Western blot was used to detecte the expressions of osteopontin (OPN), Runt-related transcription factor 2 (RUNX2), and adenosine A2AR protein. ResultsThe CCK-8 assay showed that the absorbance (A) values of groups B to F were significantly higher than that of group A at 24 hours of culture, with group C significantly higher than the rest of the groups (P<0.05). The MOR concentration (20 μmol/L) of group C was selected for the subsequent CCK-8 assay; the results showed that the A values of group C were significantly higher than those of group A at 24, 48, and 72 hours of culture (P<0.05). Alizarin red staining showed that orange-red mineralized nodules were visible in all groups and the number of mineralized nodules was significantly higher in groups B and C than in group A (P<0.05). RT-qPCR showed that the relative expressions of P21, CCND1, and PCNA mRNAs were significantly higher in group C than in group A (P<0.05). The expressions of ALP, BMP-2, COL-1, and adenosine A2AR mRNAs in groups B to E were significantly higher than those in group A, with the expressions of ALP, BMP-2, COL-1 mRNAs in group C significantly higher than the rest of the groups (P<0.05). Compared with group A, the expressions of OPN and RUNX2 proteins in groups B and C were significantly increased, while those in group D and E were significantly inhibited (P<0.05). There was no significant difference between groups B and C and between groups D and E (P>0.05). The relative expression of adenosine A2AR protein in groups B to E was significantly higher than that in group A, with group C significantly higher than the rest of the groups (P<0.05). Conclusion MOR can promote the proliferation and osteogenic differentiation of MC3T3-E1 cells; the mechanism of MOR may be achieved by interacting with adenosine A2AR.