west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "multi-scale entropy" 3 results
  • Investigation of the glucose dynamics with an approach of refined composite multi-scale entropy analysis

    The study on complexity of glucose fluctuation not only helps us understand the regulation of the glucose homeostasis system but also brings us a new insight of the research methodology on glucose regulation. In the experiments, we analyzed the complexity of the temporal structure of the 72 hours continuous glucose time series from a group of 93 subjects with type Ⅱ diabetes mellitus using the multi-scale entropy method. We adapted the most recently improved refined composite multi-scale entropy (RCMSE) algorithm which could overcome the shortcomings on the 72 hours short time series analysis. We then quantified and compared the complexity of continuous glucose time series between groups with type Ⅱ diabetes mellitus with different mean absolute glycemic excursion (MAGE) and glycated hemoglobin (HbA1c). The results implied that the complexity of glucose time series decreased on lower MAGE group compared to high MAGE group, and the entropy on scale 1 to 6 which corresponded to 5 to 30 min had significant differences between these two groups; the complexity of glucose time series decreased with the increasing HbA1c level but the entropy had no statistical difference among groups at different scales. Therefore, RCMSE provided us with a new prospect to analyze the glucose time series and it was proved that less complexity of glucose dynamics could indicate the impaired gluco-regulation function from the MAGE point of view or HbA1c for patients, and the glucose complexity had the potential to become a new biomarker to reflect the fluctuation of the glucose time series.

    Release date:2017-04-01 08:56 Export PDF Favorites Scan
  • Research progress on multiscale entropy algorithm and its application in neural signal analysis

    Changes in the intrinsic characteristics of brain neural activities can reflect the normality of brain functions. Therefore, reliable and effective signal feature analysis methods play an important role in brain dysfunction and relative diseases early stage diagnosis. Recently, studies have shown that neural signals have nonlinear and multi-scale characteristics. Based on this, researchers have developed the multi-scale entropy (MSE) algorithm, which is considered more effective when analyzing multi-scale nonlinear signals, and is generally used in neuroinformatics. The principles and characteristics of MSE and several improved algorithms base on disadvantages of MSE were introduced in the article. Then, the applications of the MSE algorithm in disease diagnosis, brain function analysis and brain-computer interface were introduced. Finally, the challenges of these algorithms in neural signal analysis will face to and the possible further investigation interests were discussed.

    Release date:2020-08-21 07:07 Export PDF Favorites Scan
  • Optimized multi-scale entropy to localize epileptogenic hemisphere of temporal lobe epilepsy based on resting-state functional magnetic resonance imaging

    Entropy model is widely used in epileptic electroencephalogram (EEG) analysis, but there are few reports on how to objectively select the parameters to compute the entropy model in the analysis of resting-state functional magnetic resonance imaging (rfMRI). Therefore, an optimization algorithm to confirm the parameters in multi-scale entropy (MSE) model was proposed, and the location of epileptogenic hemisphere was taken as an example to test the optimization effect by supervised machine learning. The rfMRI data of 20 temporal lobe epilepsy (TLE) patients with hippocampal sclerosis, positive on structural magnetic resonance imaging, were divided into left and right groups. Then, the parameters in MSE model were optimized by the receiver operating characteristic curves (ROC) and area under ROC curve (AUC) values in sensitivity analysis, and the entropy value of the brain regions with statistically significant difference between the groups were taken as sensitive features to epileptogenic hemisphere lateral. The optimized entropy values of these bio-marker brain areas were considered as feature vectors input into the support vector machine (SVM). Finally, combining optimized MSE model with SVM could accurately distinguish epileptogenic hemisphere in TLE at an average accuracy rate of 95%, which was higher than the current level. The results show that the MSE model parameter optimization algorithm can accurately extract the functional imaging markers sensitive to the epileptogenic hemisphere, and achieve the purpose of objectively selecting the parameters for MSE in rfMRI, which provides the basis for the application of entropy in advanced technology detection.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content