west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "multimodality imaging" 2 results
  • Design and implementation of postoperative evaluation pipeline of deep brain stimulation by multimodality imaging

    Deep brain stimulation (DBS) surgery is an important treatment for patients with Parkinson's disease in the middle and late stages. The accuracy of the implantation of electrode at the location of the nuclei directly determines the therapeutic effect of the operation. At present, there is no single imaging method that can obtain images with electrodes, nuclei and their positional relationship. In addition, the subthalamic nucleus is small in size and the boundary is not obvious, so it cannot be directly segmented. In this paper, a complete end-to-end DBS effect evaluation pipeline was constructed using magnetic resonance (MR) data of T1, T2 and SWI weighted by DBS surgery. Firstly, the images of preoperative and postoperative patients are registered and normalized to the same coordinate space. Secondly, the patient map is obtained by non-rigid registration of brain map and preoperative data, as well as the preoperative nuclear cluster prediction position. Then, a three-dimensional (3D) image of the positional relationship between the electrode and the nucleus is obtained by using the electrode path in the postoperative image and the result of the nuclear segmentation. The 3D image is helpful for the evaluation of the postoperative effect of DBS and provides effective information for postoperative program control. After analysis, the algorithm can achieve a good registration between the patient's DBS surgical image and the brain map. The error between the algorithm and the expert evaluation of the physical coordinates of the center of the thalamus is (1.590 ± 1.063) mm. The problem of postoperative evaluation of the placement of DBS surgical electrodes is solved.

    Release date:2019-06-17 04:41 Export PDF Favorites Scan
  • Research on three-dimensional printing technology based on three-dimensional multimodality imaging to assist the operation of malignant bone tumors of limbs

    Objective To explore the role and effectiveness of three-dimensional (3D) printing technology based on 3D multimodality imaging in surgical treatment of malignant bone tumors of limbs. Methods The clinical data of 15 patients with malignant bone tumors of the limbs who met the selection criteria between January 2016 and January 2019 were retrospectively analyzed. There were 6 males and 9 females, with a median age of 34 years (range, 17-73 years). There were 5 cases of osteosarcoma, 3 cases of chondrosarcoma, 2 cases of Ewing sarcoma, 1 case of hemangiosarcoma, 1 case of ameloblastoma, and 3 cases of metastatic carcinoma. The tumors were located in the humerus in 5 cases, ulna in 2 cases, femur in 3 cases, and tibia in 5 cases. The disease duration was 2-8 months (median, 4 months). Preoperative 3D multimodality imaging was administered first, based on which computer-assisted preoperative planning was performed, 3D printed personalized special instruments and prostheses were designed, and in vitro simulation of surgery was conducted, successively. Two cases underwent knee arthroplasty, 2 had semi-shoulder arthroplasty, 2 had proximal ulna arthroplasty, and 9 had joint-preserving surgery. Surgical margins, operation time, intraoperative blood loss, surgical complications, Musculoskeletal Tumor Society (MSTS) score, and oncological outcome were collected and analyzed. Results All 15 patients completed the operation according to the preoperative plan, and the surgical margins were all obtained wide resection margins. The operation time was 80-240 minutes, with a median of 150 minutes. The intraoperative blood loss was 100-400 mL, with a median of 200 mL. There was no significant limitation of limb function due to important blood vessels or nerves injury during operation. One case of superficial infection of the incision was cured after dressing change, and the incisions of the other patients healed by first intention. All patients were followed up 6-48 months, with a median of 24 months. Two of the patients died of lung metastasis at 6 and 24 months after operation, respectively. No local recurrence, prosthesis dislocation, or prosthesis loosening occurred during follow-up. At last follow-up, the MSTS score ranged from 23 to 30, with an average of 25. Conclusion3D printing tecnology, based on 3D multimodality imaging, facilitates precise resection and reconstruction for malignant bone tumors of limbs, resulting in improved oncological and functional outcome.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content