west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "muscle tissue engineering" 2 results
  • RESEARCH PROGRESS OF SCAFFOLD MATERIALS IN SKELETAL MUSCLE TISSUE ENGINEERING

    Objective To review the current researches of scaffold materials for skeletal muscle tissue engineering, to predict the development trend of scaffold materials in skeletal muscle tissue engineering in future. Methods The related l iterature on skeletal muscle tissue engineering, involving categories and properties of scaffold materials, preparative techniqueand biocompatibil ity, was summarized and analyzed. Results Various scaffold materials were used in skeletal muscle tissue engineering, including inorganic biomaterials, biodegradable polymers, natural biomaterial, and biomedical composites. According to different needs of the research, various scaffolds were prepared due to different biomaterials, preparative techniques, and surface modifications. Conclusion The development trend and perspective of skeletal muscle tissue engineering are the use of composite materials, and the preparation of composite scaffolds and surface modification according to the specific functions of scaffolds.

    Release date:2016-09-01 09:04 Export PDF Favorites Scan
  • A dual-crosslinked injectable hydrogel derived from muscular decellularized matrix promoting myoblasts proliferation and myogenic differentiation

    Objective To investigate the feasibility of a dual-crosslinked injectable hydrogel derived from acellular musclar matrix (AMM) for promoting myoblasts proliferation and myogenic differentiation. Methods Firstly, hyaluronic acid was oxidized with NaIO4 and methylated to prepare methacrylamidated oxidized hyaluronic acid (MOHA). Then, AMM obtained by washing enzymatically treated muscle tissue was aminolyzed to prepare aminated AMM (AAMM). MOHA hydrogel and AAMM were crosslinked using Schiff based reaction and UV radiation to prepare a dual-crosslinked MOHA/AAMM injectable hydrogel. Fourier transform infrared spectroscopy (FTIR) was used to characterize MOHA, AAMM, and MOHA/AAMM hydrogels. The injectability of MOHA/AAMM hydrogel were evaluated by manual injection, and the gelation performance was assessed by UV crosslinking. The rheological properties and Young’s modulus of the hydrogel were examined through mechanical tests. The degradation rate of the hydrogel was assessed by immersing it in PBS. The active components of the hydrogel were verified using immunofluorescence staining and ELISA assay kits. The promotion of cell proliferation by the hydrogel was tested using live/dead staining and cell counting kit 8 (CCK-8) assays after co-culturing with C2C12 myoblasts for 9 days. The effect of the hydrogel on myogenic differentiation was evaluated by immunofluorescence staining and real time quantitative polymerase chain reaction (RT-qPCR). ResultsFTIR spectra confirmed the successful preparation of MOHA/AAMM hydrogel. The hydrogel exhibited good injectability and gelation ability. Compared to MOHA hydrogel, MOHA/AAMM hydrogel exhibited higher viscosity and Young’s modulus, a reduced degradation rate, and contained a higher amount of collagen (including collagen type Ⅰ and collagen type Ⅲ) as well as bioactive factors (including epidermal growth factor, fibroblast growth factor 2, vascular endothelial growth factor, and insulin-like growth factor 1). The live/dead cell staining and CCK-8 assay indicated that with prolonged incubation time, there was a significant increase in viable cells and a decrease in dead cells in the C2C12 myoblasts within the MOHA/AAMM hydrogel. Compared with MOHA hydrogel, the difference was significant at each time point (P<0.05). Immunofluorescence staining and RT-qPCR analysis demonstrated that the deposition of IGF-1 and expression levels of myogenic-related genes (including Myogenin, Troponin T, and myosin heavy chain) in the MOHA/AAMM group were significantly higher than those in the MOHA group (P<0.05). ConclusionThe MOHA/AAMM hydrogel prepared based on AMM can promote myoblasts proliferation and myogenic differentiation, providing a novel dual-crosslinked injectable hydrogel for muscle tissue engineering.

    Release date:2023-12-12 05:09 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content