west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "nanomaterial" 6 results
  • Application advances of carbon nanomaterial in therapy for gastric cancer

    Objective To summarize application status of carbon nanomaterial in gastric cancer therapy. Method The relevant literatures about the application of the carbon nanomaterial in the gastric cancer were reviewed. Results The carbon nanomaterial was as a lymph tracer with good effects for dying and tracing, which could improve the number of lymph nodes and the detection rate of metastasis lymph nodes. As be made as a transition of chemotherapy drugs, the carbon nanomaterial could improve the concentration of the drug in the lymph node, then inhibit the gastric cancer cell to spread. Conclusion Carbon nanomaterial provides an effective help in treatment for gastric cancer, but whether it could improve prognosis of patient with gastric cancer remains to be studied.

    Release date:2018-04-11 02:55 Export PDF Favorites Scan
  • Advance of new dressings for promoting skin wound healing

    As a temporary skin substitute, the dressings can protect the wound, stop bleeding, prevent infection and contribute to wound healing. According to the characteristics of the materials, wound dressings can be classified into traditional wound dressings, interactive dressings, bioactive dressings, tissue engineering dressings and smart dressings, etc. Different dressings have different characteristics, and some products have been widely used in clinic. Recently nanomaterials and three-dimensional bio-printing technology have significantly improved the performance of wound dressings. Future dressings will be developed from single function to multi-function composite, and integrated into an intelligent one. This paper reviews the current research progress and future development prospects of wound dressings.

    Release date:2020-02-18 09:21 Export PDF Favorites Scan
  • Research progress of nanomaterials in osteomyelitis treatment

    ObjectiveTo review the related studies on the application of nanomaterials in the treatment of osteomyelitis, and to provide new ideas for the research and clinical treatment of osteomyelitis.MethodsThe literature about the treatment of osteomyelitis with nanomaterials at home and abroad in recent years was reviewed and analyzed.ResultsAt present, surgical treatment and antibiotic application are the main treatment options for osteomyelitis. But there are many defects such as antibiotic resistance, residual bone defect, and low effective concentration of local drugs. The application of nanomaterials can make up for the above defects. In recent years, nanomaterials play an important role in the treatment of osteomyelitis by filling bone defects, establishing local drug delivery system, and self-antibacterial properties.ConclusionIt will provide a new idea and an important research direction for the treatment of osteomyelitis to fully study the related characteristics of nanomaterials and select beneficial materials to make drug delivery system or substitute drugs.

    Release date:2021-06-07 02:00 Export PDF Favorites Scan
  • In vivo degradation and histocompatibility of modified chitosan based on conductive composite nerve conduit

    ObjectiveTo investigate the in vivo degradation and histocompatibility of modified chitosan based on conductive composite nerve conduit, so as to provide a new scaffold material for the construction of tissue engineered nerve.MethodsThe nano polypyrrole (PPy) was synthesized by microemulsion polymerization, blended with chitosan, and then formed conduit by injecting the mixed solution into a customized conduit formation model. After freeze-drying and deacidification, the nano PPy/chitosan composite conduit (CP conduit) was prepared. Then the CP conduits with different acetyl degree were resulted undergoing varying acetylation for 30, 60, and 90 minutes (CAP1, CAP2, CAP3 conduits). Fourier infrared absorption spectrum and scanning electron microscopy (SEM) were used to identify the conduits. And the conductivity was measured by four-probe conductometer. The above conduits were implanted after the subcutaneous fascial tunnels were made symmetrically on both sides of the back of 30 female Sprague Dawley rats. At 2, 4, 6, 8, 10, and 12 weeks after operation, the morphology, the microstructure, and the degradation rate were observed and measured to assess the in vivo degradation of conduits. HE staining and anti-macrophage immunofluorescence staining were performed to observe the histocompatibility in vivo.ResultsThe characteristic peaks of the amide Ⅱ band around 1 562 cm−1 appeared after being acetylated, indicating that the acetylation modification of chitosan was successful. There was no significant difference in conductivity between conduits (P>0.05). SEM observation showed that the surfaces of the conduits in all groups were similar with relatively smooth surface and compact structure. After the conduits were implanted into the rats, with the extension of time, all conduits were collapsed, especially on the CAP3 conduit. All conduits had different degrees of mass loss, and the higher the degree of acetylation, the greater the mass change (P<0.05). SEM observation showed that there were more pores at 12 weeks after implantation, and the pores showed an increasing trend as the degree of acetylation increased. Histological observation showed that there were more macrophages and lymphocytes infiltration in each group at the early stage. With the extension of implantation time, lymphocytes decreased, fibroblasts increased, and collagen fibers proliferated significantly. ConclusionThe modified chitosan basedon conductive composite nerve conduit made of nano-PPy/chitosan composite with different acetylation degrees has good biocompatibility, conductivity, and biodegradability correlated with acetylation degree in vivo, which provide a new scaffold material for the construction of tissue engineered nerve.

    Release date:2021-06-30 03:55 Export PDF Favorites Scan
  • Research progress about photothermal nanomaterials with targeted antibacterial properties and their applications in wound healing

    With the development of photothermal nanomaterials, photothermal therapy based on near-infrared light excitation shows great potential for the bacterial infected wound treatment. At the same time, in order to improve the photothermal antibacterial effect of wound infection and reduce the damage of high temperature and heat to healthy tissue, the targeted bacteria strategy has been gradually applied in wound photothermal therapy. In this paper, several commonly used photothermal nanomaterials as well as their targeted bacterial strategies were introduced, and then their applications in photothermal antibacterial therapy, especially in bacterial infected wounds were described. Besides, the challenges of targeted photothermal antibacterial therapy in the wound healing application were analyzed, and the development of photothermal materials with targeted antibacterial property has prospected in order to provide a new idea for wound photothermal therapy.

    Release date: Export PDF Favorites Scan
  • Research progress of nanomaterials for intra-articular targeted drug delivery in treatment of osteoarthritis

    ObjectiveTo review the research progress of intra-articular targeted delivery of nanomaterials in the treatment of osteoarthritis (OA). MethodsThe domestic and foreign related literature on intra-articular targeted delivery of nanomaterials for the treatment of OA was extensively reviewed, and their targeting strategies were discussed and summarized. Results Rapid drug clearance from the joint remains a critical limitation in drug efficacy. Nanocarriers can not only significantly improve the residence profiles of drugs in the joint, but also achieve targeted delivery of drugs to specific joint tissues through active or passive targeting strategies. Conclusion With the continuous development of various emerging tissue- or cell-specific drugs, the targeted delivery of drugs with nanomaterials promise to realize the clinical translation of these drugs in the treatment of OA.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content