Objective To analyze the therapy and effectiveness of ulnar styloid fracture complicated with wrist dorsal branch of ulnar nerve injury. Methods Between October 2005 and October 2012, 16 cases of ulnar styloid fracture complicated with wrist dorsal branch of ulnar nerve injury were treated. There were 14 males and 2 females with an average age of 42 years (range, 22-58 years). Fracture was caused by traffic accident in 8 cases, by mechanical crush in 5 cases, and by falling in 3 cases. According to the anatomical features of the ulnar styloid and imaging findings, ulnar styloid fractures were classified as type I (ulnar styloid tip fracture) in 1 case and type II (ulnar styloid base fracture) in 15 cases. The skin sensation of ulnar wrist was S0 in 5 cases, S1 in 1 case, S2 in 7 cases, and S3 in 3 cases according to the criteria of the British Medical Research Council in 1954 for the sensory functions of the ulnar wrist. The time from injury to operation was 6-72 hours (mean, 18 hours). Fracture was treated by operative fixation, and nerve was repaired by epineurium neurolysis in 13 cases of nerve contusion and by sural nerve graft in 3 cases of complete nerve rupture. Results All incisions healed by first intention. Sixteen patients were followed up for an average time of 14 months (range, 6-24 months). The X-ray films showed that all of them achieved bone union at 4-10 weeks after operation (mean, 6 weeks). No patient had complications such as ulnar wrist chronic pain and an inability to rotate. According to Green-O’Brien wrist scoring system, the results were excellent in 13 cases and good in 3 cases; according to the criteria of the British Medical Research Council in 1954 for the sensory functions of the ulnar wrist, the results were excellent in all cases, including 11 cases of S4 and 5 cases of S3+. Two-point discrimination of the ulnar wrist was 5-9 mm (mean, 6.6 mm). Conclusion For patients with ulnar styloid fracture complicated with wrist dorsal branch of ulnar nerve injury, internal fixation and nerve repair should be performed. It can prevent ulnar wrist pain and promote sensory recovery.
Objective Peri pheral nerve injury is a common cl inical disease, to study the effects of the physical therapy on the regeneration of the injured sciatic nerve, and provide a reference for cl inical treatment. Methods Sixty-four female adult Wistar rats (weighing 252-365 g) were chosen and randomly divided into 4 groups (n=16): group A, group B, groupC, and group D. The experimental model of sciatic nerve defect was establ ished by crushing the right sciatic nerve in groups B, C, and D; group A served as the control group without crushing. At 2 days after injury, no treatment was given in group B, electrical stimulation in group C, and combined physical therapies (decimeter and infrared ray) in group D. At 0, 7, 14, and 30 days after treatment, the sciatic nerve function index (SFI) and the motor nerve conduction velocity (MNCV) were measured, and morphological and transmission electron microscopy (TEM) examinations were done; at 30 days after treatment, the morphological evaluation analysis of axons was performed. Results At 0 and 7 days after treatment, the SFI values of groups B, C, and D were significantly higher than that of group A (P lt; 0.05); at 14 and 30 days after treatment, the SFI value of group D decreased significantly, no significant difference was observed between group D and group A (P gt; 0.05) at 30 days; whereas the SFI values of groups B and C decreased, showing significant difference when compared with the value of group A (P lt; 0.05). At 0, 7, and 14 days after treatment, the MNCV values of groups B, C, and D were significantly lower than that of group A (P lt; 0.05), and there were significantly differences between group B and groups C, D (P lt; 0.05); at 14 days, the MNCV value of group D was significantly higher than that of group C (P lt; 0.05); and at 30 days, the MNCV values of groups B and C were significantly lower than that of group A (P lt; 0.05), but there was no significant difference between group D and group A (P gt; 0.05). At 0 and 7 days, only collagen and l i pid were observed by TEM; at 14 and 30 days, many Schwann cells and perineurial cells in regeneration axon were observed in groups B, C, and D, especially in group D. Automated image analysis of axons showed that there was no significant difference in the number of myelinated nerve fibers, axon diameter, and myelin sheath thickness between group D and group A (P gt; 0.05), and the number of myelinated nerve fibers and axon diameter of group D were significantly higher than those of groups B and C (P lt; 0.05). Conclusion Physical therapy can improve the regeneration of the injured sciatic nerve of rats.
Objective To evaluate the results of thumb opposition function by transferring the extensor carpi ulnaris and the extensor poll icis brevis muscle tendons. Methods Between March 2006 and August 2009, 35 patients with dysfunction of thumb opposition were treated and the thumb opposition function was reconstruced by transferring the extensor carpi ulnaris and the extensor poll icis brevis muscle tendons. There were 25 males and 10 females with an average age of 33.5 years (range, 20-53 years); 20 had median nerve injury in the wrist and 15 had median nerve injury with ulnar nerve injury. The causes were sharp instrument injury in 24 cases, blunt injury in 9 cases, and hot crush injury in 2 cases. Six cases complicated by shaft fractures of radius and ulna. All the patients underwent an operation of nerve repair at 1 to 3 hours after injury (mean, 2 hours). The time from injury to reconstructing operation was 6-14 months (mean, 7.5 months). Two cases was able to abduct thumb sl ightly, the others had no functions of thumb abduct and thumb opposition. Results All the wounds gained the primary healing. The patients were followed up 12-18 months (mean, 14 months). The wrist joint angle and thumb dorsal extension were satisfactory. Thumb abduct and thumb opposition function returned to normal in 20 patients with simple median nerve injury; in 15 patients with median nerve injury and ulnar nerve injury, thumb abduct and thumb opposition function returned to normal in 15 and 13, respectively. According to ZHAO Shuqiang’s standard, the results of thumb opposition function were normal in all patients at 12 months after operation. Conclusion It is a convenient and efficient procedure to reconstruct thumb opposition function by transferring the extensor carpi ulnaris and the extensor poll icis brevis muscle tendons.
Objective To observe the histomorphology and the biocompatibil ity of acellular nerve prepared by different methods, to provide the experimental evidence for the selection of preparation of acellular nerve scaffold. Methods Forty-eight adult Sprague Dawley rats, male or female, weighing 180-220 g, were selected. The sciatic nerves were obtained from 30 rats and were divided into groups A, B, and C (each group had 20 nerves). The acellular sciatic nerves were prepared by the chemical methods of Dumont (group A), Sondell (group B), and Haase (group C). The effect to remove cells was estimated by the degree of decellularization, degree of demyel ination, and intergrity of nerve fiber tube. The histocompatibil ity was observed by subcutaneous implant test in another 18 rats. Three points were selected along both sides of centre l ine on the back of rats, and the points were randomly divided into groups A1, B1, and C1; the acellular nerve of groups A, B, and C were implanted in the corresponding groups A1, B1, and C1. At 1, 2, and 4 weeks after operation, the rats were sacrificed to perform the general observation and histological observation. Results The histomorphology: apart of cells and the dissolved scraps of axon could be seen in acellular never in the group A, and part of Schwann cell basilar membrane was broken. In group B, the cells in the acellular never were not removed completely, the Schwann cell basilar membrane formed bigger irregular hollows, part of the Schwann cell basilar membrane was broken obviously. But in the group C, the cells were completely removed, the Schwann cell basilar membrane remained intactly. Group C was better than group A and group B in the degree of decellularization, degree of demyel ination, integrity of nerve fiber tube and total score, showing significant differences (P lt; 0.05). The subcutaneous implant test: there were neutrophils and lymphocytes around the acellular nerve in 3 groups at 1 week after implant. A few of lymphocytes were observed around the acellular nerve in 3 groups at 2 weeks after implant. The inflammation was less in groups A1, B1, and C1 at 4 weeks after implant, part of the cells grew into the acellular nerve and arranged along the Schwann cell basilar membrane. The reaction indexes of the inflammational cells in group A1 and group B1 were higher than that in group C1 at 1, 2, and 4 weeks after implant, showing significant differences (P lt; 0.01), but there was no significant difference between group A1 and group B1 (P gt; 0.05). Conclusion The acellular sciatic nerves prepared by Haase method has better acellular effect and the histocompatibil ity than those by the methods of Dumont and Sondell.
Objective To investigate the anatomical evidence of low end-to-side anastomosis of median nerve and ulnar nerve in repair of Dejerine Klumpke type paralysis or high ulnar nerve injury. Methods Twelve formaldehyde anticorrosion specimens (24 sides) and 3 fresh specimens (6 sides) were observed. There were 9 males (18 sides) and 6 females(12 sides). The specimen dissected under the microscope. S-shape incision was made at palmar thenar approaching ulnar side, the profundus nervi ulnaris and superficial branch of ulnar nerve were separated through near end of incision, and the recurrent branch of median nerve and comman digital nerve of the ring finger were separated through far end of incision. The distances from pisiform bone to the start point of the recurrent branch of median nerve, and to the start point of comman digital nerve of the ring finger were measured. The width and thickness of the profundus nervi ulnaris and superficial branch of ulnar nerve, and the recurrent branch of median nerve and comman digital nerve of the ring finger were measured, and the cross-sectional area was calculated. The number of nerve fiber was determined with HE staining and argentaffin staining. Results The crosssectional area and the number of nerve fiber were (2.46 ± 1.03) mm2 and 1 305 ± 239 for the profundus nervi ulnaris, (2.62 ± 1.75) mm2 and 1 634 ± 343 for the recurrent branch of median nerve, (1.60 ± 1.39) mm2 and 1 201 ± 235 for the superficial branch of ulnar nerve, and (2.19 ± 0.89) mm2 and 1 362 ± 162 for the comman digital nerve of the ring finger. There were no significant differences (P gt; 0.05) in the cross-sectional area and the number of nerve fiber between the profundus nervi ulnaris and the recurrent branch of median nerve, between the superficial branch of ulnar nerve and the comman digital nerve of the ring finger; and two factors had a l inear correlation (P lt; 0.05) with correlation coefficients of 0.68, 0.66 and 0.56, 0.36. The distances were (36.98 ± 4.93) mm from pisiform bone to the start point of the recurrent branch of median nerve, and (28.35 ± 6.63) mm to the start point of comman digital nerve of the ring finger. Conclusion Low end-to-side anastomosis of median nerve and ulnar nerve has perfect match in the cross-sectional area and the number of nerve fiber.
Objective To provide anatomy evidence of the simple injury of the deep branch of the unlar nerve for cl inical diagnosis and treatments. Methods Fifteen fresh samples of voluntary intact amputated forearms with no deformity were observed anatomically, which were mutilated from the distal end of forearm. The midpoint of the forth palm fingerweb wasdefined as dot A , the midpoint of the hook of the hamate bone as dot B, the ulnar margin of the flexor digitorum superficial is of the l ittle finger as OD, and the superficial branch of the unlar nerve and the forth common finger digital nerve as OE, dot O was the vertex of the triangle, dot C was intersection point of a vertical l ine passing dot B toward OE; dot F was the intersection point of CB’s extension l ine and OD. OCF formed a triangle. OCF and the deep branch of the unlar nerve were observed. From May 2000 to June 2007, 3 cases were treated which were all simple injury of the deep branch of the unlar nerve by glass, diagnosed through anatomical observations. The wounds were all located in the hypothenar muscles, and passed through the distal end of the hamate bone. Muscle power controlled by the unlar nerve got lower. The double ends was sewed up in 2 cases directly intra operation, and the superficial branch of radial nerve grafted freely in the other 1 case. Results The distance between dot B and dot O was (19.20 ± 1.30) mm. The length of BC was (7.80 ± 1.35) mm. The morpha of OCF was various, and the route of profundus nervi ulnaris was various in OCF. OCF contains opponens canales mainly. The muscle branch of the hypothenar muscles all send out in front of the opponens canales. The wounds of these 3 cases were all located at the distal end of the hook of the hamate bone, intrinsic muscles controlled by the unlar nerve except hypothenar muscles were restricted without sensory disorder or any other injuries. Three cases were followed up for 2 months to 4 years. Postoperation, the symptoms disappeared, holding power got well, patients’ fingers were nimble. According to the trial standard of the function of the upper l imb peripheral nerve establ ished by Chinese Medieal Surgery of the Hand Association, the synthetical evaluations were excellent.Conclusion Simple injuries of the deep branch of the unlar nerve are all located in OCF; it is not easy to be diagnosed at the early time because of the l ittle wounds, the function of the hypothenar muscles in existence and the normal sense .
Objective To review researches of treatment of peripheral nerve injury with neuromuscular electrical stimulation (NMES) regarding mechanism, parameters, and cl inical appl ication at home and abroad. Methods The latest original l iterature concerning treatment of peri pheral nerve injury with NMES was extensively reviewed. Results NMES should be used under individual parameters and proper mode of stimulation at early stage of injury. It could promote nerve regeneration and prevent muscle atrophy. Conclusion NMES plays an important role in cl inical appl ication of treating peripheral nerve injury, and implantable stimulation will be the future.
Objective To compare their competence of olfactory epithel ial gl iacytes, olfactory globular nerve layer (OGNL) gl iacytes and SC in repair nerve defect of sciatic nerve, and select the best gl iacytes for repair of peri pheral nerve defect. Methods Olfactory epithel ial gl iacytes, OGNL gl iacytes and SC were extracted from 20 female Wistar rats aged 2-3 months and cultured in vitro for 2 weeks, then purified and condensed for transplantation. Eighty adult female Wistar rats were randomized into groups A, B, C and D (n=20). The left sciatic nerves were excised 25 mm axons and retained epineuriumlumen anastomosed to proximal ends. The culture mediums, SC, OGNL gl iacytes, and olfactory epithel ial gl iacytes weretransplanted into the epineurium lumen of groups A, B, C and D, respectively. Three months postoperatively, the injured sciatic nerve regeneration was evaluated by methods of macroscopic observation, photomicroscope, transmission electron microscope, retro-marked fluorescence transportation distance, the gl ial fibrillary acidic protein (GFAP) and nerve growth factor (NGF) were assayed by immunofluorescence, and the myel in basic protein (MBP) and neurofilament (NF) protein were assayed by ELISA. Results The scores of ankle joint were (3.325 ± 0.963), (4.200 ± 1.005), (5.143 ± 0.635) and (5.950 ± 0.154) in groups A, B, C and D, respectively; showing statistically significant difference between groups (P lt; 0.05). The obse vations of gross, sections under microscope and transmission electron microscope showed the regeneration of defect nerve was best in group D, followed by group C, and group B was superior to group A. The transportation distance of retro-marked fluorescence was longest in group D, followed by group C, and group B was superior to group A. The concentrations of GFAP and NGF were largest in group D, followed by group C, and group B was superior to group A. The MBP concentrations were (9.817 ± 3.267), (12.347 ± 3.091), (14.937 ± 2.075) and (22.757 ± 0.871) ng/mL in groups A, B, C and D, respectively; showing statistically significant difference between other groups (P﹤0.05) except between group A and group B (P gt; 0.05). And the NF concentrations were (13.869 ± 5.677), (18.498 ± 3.889), (23.443 ± 2.260) and (27.610 ± 1.125) ng/mL in groups A, B, C and D, respectively; showing statistically significant difference between groups (P﹤0.05). Conclusion Olfactory epithel ial gl iacytes, OGNL gl iacytes and SC transplantation could repair injured nerve. The competence of olfactory epithel iums is superior to the OGNL gl iacytes andSC, and the OGNL gl iacytes is better than SC.
Objective To construct adenovirus expressing NGF (Ad-NGF) and to investigate its promotive effect on the reparation and regeneration of sciatic nerve injury in rats. Methods NGF gene sequence was cloned into shuttle plasmid pCA13 of adenovirus type 5. After packed in HEK-293 cells, the recombinant adenoviruses-Ad-NGF underwent sequence identification. Thirty-two male SD rats weighing 180-200 g were randomly divided into 4 groups (n=8 rats per group). Sciatic nerve injury model was establ ished by disconnecting and direct suturing the right sciatic nerve in the rat. Theright gastrocnemius muscle of group A and C received Ad-NGF injection and adenovirus vector without NGF gene sequence injection, respectively, and 1 × 108 PFU/per time was given every other day for three times. Group B and D received NGF injection (200 U/d) and normal sal ine (100 ?L/d), respectively, for 3 weeks. The effect of various treatments on injured sciatic nerve was evaluated by performing sciatic nerve function index and nerve electrophysiology detections 31 days after operation. Meanwhile, the sciatic nerve in the anastomosis and at the site 1 cm distal to the anastomosis were obtained, and underwent RTPCR and Western blot analysis for detecting NGF mRNA and protein expression level in the injured sciatic nerve in the rats. Histology, immunohistochemistry, and transmission electron microscope observations were conducted. Results Ad-NGF carrying NGF gene sequence was constructed successfully and confirmed by sequence analysis. The sciatic nerve function index, nerve conduction velocity, evoked potential ampl itude, and latent period of group A was better than those of other groups (P lt; 0.05), and there were no significant differences among group B, C, and D (P gt; 0.05). RT-PCR and Western blot detection: the expression levels of NGF mRNA and protein in group A were greater than those of group B, C, and D (P lt; 0.05), and no significant differences were noted among group B, C, and D (P gt; 0.05). Histology and immunohistochemistry observation showed that the regeneration of the sciatic nerve in group A was obvious superior to that of other groups. Transmission electron microscopy observation suggested there was significant difference between group A and groups B, C, and D in terms of axonal diameter of sciatic nerve cross-section, myel in sheath thickness and nerve fiber number (P lt; 0.05), and there were no significant differences among group B, C, and D (P gt; 0.05). Conclusion Ad-NGF can effectively promote the repair of sciatic nerveinjury in rats, and is a new method for obtaining large amounts of NGF in the area of injured peripheral nerve.
Objective To observe the delaying effect of neural stem cell (NSC) transplantation on denervated muscle atrophy after peri pheral nerve injury, and to investigate its mechanism. Methods NSCs were separated from the spinal cords of green fluorescent protein (GFP) transgenic rats aged 12-14 days mechanically and were cultured and induced to differentiate in vitro. Thirty-two F344 rats, aged 2 months and weighed (180 ± 20) g, were randomized into two groups (n=16 per group). The animal models of denervated musculus triceps surae were establ ished by transecting right tibial nerve and commom peroneal nerve 1.5 cm above the knee joints. In the experimental and the control group, 5 μL of GFP-NSCsuspension and 5 μL of culture supernatant were injected into the distal stump of the tibial nerve, respectivel. The generalcondition of rats after operation was observed. At 4 and 12 weeks postoperatively, the wet weight of right musculus tricepssurae was measured, the HE staining, the Mallory trichrome staining and the postsynaptic membrane staining were adopted for the histological observation. Meanwhile, the section area of gastrocnemius fiber and the area of postsynaptic membrane were detected by image analysis software and statistical analysis. Results The wounds in both groups of animals healed by first intension, no ulcer occurred in the right hind l imbs. At 4 and 12 weeks postoperatively, the wet weight of right musculus triceps surae was (0.849 ± 0.064) g and (0.596 ± 0.047) g in the experimental group, respectively, and was (0.651 ± 0.040) g and (0.298 ± 0.016) g in the control group, respectively, showing a significant difference (P lt; 0.05). The fiber section area of the gastrocnemius was 72.55% ± 8.12% and 58.96% ± 6.07% in the experimental group, respectively, and was 50.23% ± 4.76% and 33.63% ± 4.41% in the control group, respectively. There were significant differences between them (P lt; 0.05). Mallory trichrome staining of muscle notified that there was more collagen fiber hyperplasia of denervated gastrocnemius in the control group than that in the experimental group at 4 and 12 weeks postoperatively. After 12 weeks of operation, the area of postsynaptic membrane in the experimental group was (137.29 ± 29.14) μm2, which doubled that in the control group as (61.03 ± 11.38) μm2 and was closer to that in normal postsynaptic membrane as (198.63 ± 23.11) μm2, showing significant differences (P lt; 0.05). Conclusion The transplantation in vivo of allogenic embryonic spinal cord NSCs is capable of delaying denervated muscle atrophy and maintaining the normal appearance of postsynaptic membrane, providing a new approach to prevent and treat the denervated muscle atrophy cl inically.