Objective To summarize the regulatory effect of non-coding RNA (ncRNA) on type H vessels angiogenesis of bone. Methods Recent domestic and foreign related literature about the regulation of ncRNA in type H vessels angiogenesis was widely reviewed and summarized. ResultsType H vessels is a special subtype of bone vessels with the ability to couple bone formation. At present, the research on ncRNA regulating type H vessels angiogenesis in bone diseases mainly focuses on microRNA, long ncRNA, and small interfering RNA, which can affect the expressions of hypoxia inducible factor 1α, platelet derived growth factor BB, slit guidance ligand 3, and other factors through their own unique ways of action, thus regulating type H vessels angiogenesis and participating in the occurrence and development of bone diseases. ConclusionAt present, the mechanism of ncRNA regulating bone type H vessels angiogenesis has been preliminarily explored. With the deepening of research, ncRNA is expected to be a new target for the diagnosis and treatment of vascular related bone diseases.
Objective To review the research progress on the role of Schwann cells in regulating bone regeneration. MethodsThe domestic and foreign literature about the behavior of Schwann cells related to bone regeneration, multiple tissue repair ability, nutritional effects of their neurotrophic factor network, and their application in bone tissue engineering was extensively reviewed. ResultsAs a critical part of the peripheral nervous system, Schwann cells regulate the expression level of various neurotrophic factors and growth factors through the paracrine effect, and participates in the tissue regeneration and differentiation process of non-neural tissues such as blood vessels and bone, reflecting the nutritional effect of neural-vascular-bone integration. ConclusionTaking full advantage of the multipotent differentiation ability of Schwann cells in nerve, blood vessel, and bone tissue regeneration may provide novel insights for clinical application of tissue engineered bone.
OBJECTIVE: To establish the animal models of mandibular distraction osteogenesis in rabbits and study its osteogenetic mechanism. METHODS: The right mandibles just anterior to the first molars of 12 rabbits were performed osteotomies, and the mandibles were positioned with distractors. The left mandibles were control group without operation. After 1 week, the distractors were stretched 0.9 mm every day for 10 days progressively. One day, 2, 4, 8 weeks after distraction, the mandibles were studied with gross measurement, X-ray, and histological examination. RESULTS: The right mandible were lengthened 8.3 mm on average without bone nonunion and deformity healing. It was observed that the gaps between the distracted bone edges were first occupied by fibrous tissue. Two weeks after distraction, it was found that the gaps were bridged by callus in X-ray, the new bone and the normal bone could not be differentiated clearly after 8 weeks. In histological sections, there were collagen bundles in early distraction, then those collagen bundles were calcificated and become trabeculaes. No Cartilage was found during distraction. CONCLUSION: It suggests that the rabbit mandible can be lengthened by distraction osteogenesis, and the new bone is formed by intramembranous ossification.
Objective To discuss the role of heparan sulfate (HS) in bone formation and bone remodeling and summarize the research progress in the osteogenic mechanism of HS. Methods The domestic and abroad related literature about HS acting on osteoblast cell line in vitro, HS and HS composite scaffold materials acting on the ani-mal bone defect models, and the effect of HS proteoglycans on bone development were summarized and analyzed. Results Many growth factors involved in fracture healing especially heparin-binding growth factors, such as fibroblast growth factors, bone morphogenetic protein, and transforming growth factor β, are connected noncovalently with long HS chains. HS proteoglycans protect these proteins from protease degradation and are directly involved in the regulation of growth factors signaling and bone cell function. HS can promote the differentiation of stem cells into osteoblasts and enhance the differentiation of osteoblasts. In bone matrix, HS plays a significant role in promoting the formation, maintaining the stability, and accelerating the mineralization. Conclusion The osteogenesis of HS is pronounced. HS is likely to become the clinical treatment measures of fracture nonunion or delayed union, and is expected to provide more choices for bone tissue engineering with identification of its long-term safety.
ObjectiveTo study the ectopic osteogenesis and biocompatibility of bone morphogenetic protein 2 (BMP-2)-derived peptide P24 loaded chitosan-4-thio-butylamidine (CS-TBA) hydrogel.MethodsFirst, the CS-TBA/hydroxyapatite (HA) solution was prepared by using chitosan, 2-iminothiolane hydrochloride, and HA. Then, the different amount of P24 peptides were added to the CS-TBA/HA to prepare the CS-TBA/5%P24/HA and CS-TBA/10%P24/HA solutions. Finally, β-glycerophosphate disodium (β-GP) was added to the CS-TBA/HA, CS-TBA/5%P24/HA, and CS-TBA/10%P24/HA to prepare the CS-TBA/HA/β-GP, CS-TBA/5%P24/HA/β-GP, and CS-TBA/10%P24/HA/β-GP hydrogels, respectively. Eighteen Sprague Dawley female rats were randomly divided into 3 groups (n=6), which were injected into the back muscle pouches with equal volume CS-TBA/HA/β-GP hydrogel (group A), CS-TBA/5%P24/HA/β-GP hydrogel (group B), and CS-TBA/10%P24/HA/β-GP hydrogel (group C). The animals were sacrificed at 4 and 8 weeks and conducted micro-CT. The ability of biodegradation and osteogenesis of hydrogl was detected by trabecular thickness (Tb.Th), trabecular number (Tb.N), bone mineral density (BMD), and histological staining (HE and Masson).ResultsAll the rats survived to the time point of the harvest. Micro-CT results showed that the new bones gradually increased in each group after operation. At the same time, the new bone formation was more obvious in groups B and C than in group A, and with the increase of P24 concentration, new bone formation in group C was much more than that in group B. The Tb.Th, Tb.N, and BMD increased gradually in 3 groups, and the differences between 4 and 8 weeks were significant (P<0.05) except the Tb.Th in group A. At different time points, the Tb.Th, Tb.N, and BMD were significantly higher in groups B and C than in group A (P<0.05), and in group C was higher than in group B (P<0.05), showing significant differences between groups. Histological staining showed that the materials of groups B and C were biodegradable, and the osteogenic effect was increased with the increase of P24 concentration.ConclusionP24 peptide can improve the ectopic osteogenesis of CS-TBA hydrogel, and the 10% concentration is more effective.
By using Urist s method four types of BMG from the long bones of the rabbit、 pig、sheep、 and human being were prepared. Each of them was implanted into the pectoralis and thigh muscles in 25 adult rats, respectiely. Two-eight weeks after implantation, the unoreaction and inductive osteogensis potential in the tissues were observed under mieroscope. The result showed that aBMG had inductive osteogenesis potential. However, rejection in varying digree existed around aBMG. It was important to further decrease the antingenicity digree exised around a BMG . and enhance its osteogennic potential before the possibility of its clinical application.
Titanium and its alloys have become one of the most widely used implant materials in orthopedics because of their excellent mechanical properties and biocompatibility. Implant-associated infection is the main reason of failure of orthopedic implant surgery. The anti-infection modification of implant surface has received more attention in the field of infection prevention and developed rapidly. This article focuses on the current research status of simple anti-infection surface modifications that make titanium implants possess anti-adhesion, bactericidal activity or antibacterial membrane activity, as well as the research progress of composite functional surface modifications that promote bone integration, osteogenesis or immunomodulatory effects on the basis of anti-infection, so as to provide references for the construction of orthopedic implants with composite functions.
ObjectiveTo investigate the heterotopic osteogenesis of tissue engineered bone using the co-culture system of vascular endothelial cells (VECs) and adipose-derived stem cells (ADSCs) as seed cells.MethodsThe partially deproteinized biological bone (PDPBB) was prepared by fibronectin combined with partially deproteinized bone (PDPB). The ADSCs of 18-week-old Sprague Dawley (SD) rats and VECs of cord blood of full-term pregnant SD rats were isolated and cultured. Three kinds of tissue engineered bone were constructed in vitro: PDPBB+VECs (group A), PDPBB+ADSCs (group B), PDPBB+co-cultured cells (VECs∶ADSCs was 1∶1, group C), and PDPBB was used as control group (group D). Scanning electron microscopy was performed at 10 days after cell transplantation to observe cell adhesion on scaffolds. Forty-eight 18-week-old SD rats were randomly divided into groups A, B, C, and D, with 12 rats in each group. Four kinds of scaffolds, A, B, C, and D, were implanted into the femoral muscle bags of rats in corresponding groups. The animals were killed at 2, 4, 8, and 12 weeks after operation for gross observation, HE staining and Masson staining histological observation, and the amount of bone collagen was measured quantitatively by Masson staining section.ResultsScanning electron microscopy showed that the pores were interconnected in PDPB materials, and a large number of lamellar protein crystals on the surface of PDPBB modified by fibronection were loosely attached to the surface of the scaffold. After 10 days of co-culture PDPBB and cells, a large number of cells attached to PDPBB and piled up with each other to form cell clusters in group C. Polygonal cells and spindle cells were mixed and distributed, and some cells grew along bone trabeculae to form cell layers. Gross observation showed that the granulation tissue began to grow into the material pore at 2 weeks after operation. In group C, a large number of white cartilage-like substances were gradually produced on the surface of the material after 4 weeks, and the surface of the material was uneven. At 12 weeks, the amount of blood vessels on the surface of group A increased, and the material showed consolidation; there was a little white cartilage-like material on the surface of group B, but the pore size of the material did not decrease significantly; in group D, the pore size of the material did not decrease significantly. Histological observation showed that there was no significant difference in the amount of bone collagen between groups at 2 weeks after operation (F=2.551, P=0.088); at 4, 8, and 12 weeks after operation, the amount of bone collagen in group C was significantly higher than that in other 3 groups, and that in group B was higher than that in group D (P<0.05); there was no significant difference between group A and groups B, D (P>0.05).ConclusionThe ability of heterotopic osteogenesis of tissue engineered bone constructed by co-culture VECs and ADSCs was the strongest.
Objective To develop a drug-loaded composite microsphere that can simultaneously release the berberine (BBR) and naringin (NG) to repair infectious bone defects. MethodsThe NG was loaded on mesoporous microspheres (MBG) to obtain the drug-loaded microspheres (NG-MBG). Then the dual drug-loaded compound microspheres (NG-MBG@PDA-BBR) were obtained by wrapping NG-MBG with polydopamine (PDA) and modifying the coated PDA with BBR. The composite microspheres were characterized by scanning electron microscopy, X-ray diffraction, specific surface area and pore volume analyzer, and Fourier transform infrared spectroscopy; the drug loading rate and release of NG and BBR were measured; the colony number was counted and the bacterial inhibition rate was calculated after co-culture with Staphylococcus aureus and Escherichia coli for 12 hours to observe the antibacterial effect; the biocompatibility was evaluated by live/dead cell fluorescence staining and cell counting kit 8 assay after co-culture with rat’s BMSCs for 24 and 72 hours, respectively, and the osteogenic property was evaluated by alkaline phosphatase (ALP) staining and alizarin red staining after 7 and 14 days, respectively. Results NG-MBG@PDA-BBR and three control microspheres (MBG, MBG@PDA, and NG-MBG@PDA) were successfully constructed. Scanning electron microscopy showed that NG-MBG@PDA-BBR had a rough lamellar structure, while MBG had a smooth surface, and MBG@PDA and NG-MBG@PDA had a wrapped agglomeration structure. Specific surface area analysis showed that MBG had a mesoporous structure and had drug-loading potential. Low angle X-ray diffraction showed that NG was successfully loaded on MBG. The X-ray diffraction pattern contrast showed that all groups of microspheres were amorphous. Fourier transform infrared spectroscopy showed that NG and BBR peaks existed in NG-MBG@PDA-BBR. NG-MBG@PDA-BBR had good sustained drug release ability, and NG and BBR had early burst release and late sustained release. NG-MBG@PDA-BBR could inhibit the growth of Staphylococcus aureus and Escherichia coli, and the antibacterial ability was significantly higher than that of MBG, MBG@PDA, and NG-MBG@PDA (P<0.05). But there was a significant difference in biocompatibility at 72 hours among microspheres (P<0.05). ALP and alizarin red staining showed that the ALP positive area and the number of calcium nodules in NG-MBG@PDA-BBR were significantly higher than those of MBG and NG-MBG (P<0.05), and there was no significant difference between NG-MBG@PDA and NG-MBG@PDA (P>0.05). Conclusion NG-MBG@PDA-BBR have sustained release effects on NG and BBR, indicating that it has ideal dual performance of osteogenesis and antibacterial property.
ObjectiveTo explore the effectiveness and method of Ilizarov technology for the treatment of infected forearm nonunion. MethodsBetween January 2004 and March 2014, 19 patients with infected forearm nonunion were treated, including 12 males and 7 females with a mean age of 37.4 years (range, 18-62 years). The injury causes included traffic accident in 11 patients, falling from height in 4 patients, and machine twist injury in 4 patients. The patients had received surgical treatment for 1-5 times (mean, 2.7 times). Bone defects located at the radius in 10 cases, at the ulna in 7 cases, and at the radius and ulna in 2 cases. The mean time of chronic infection was 8.3 months (range, 4-16 months). The mean length of the bone defects after debridement was 3.54 cm (range, 2.2-7.5 cm). Under the guidance of C-arm fluoroscope, the Orthofix unilateral external fixator was used to fix. Distraction was performed at 7-10 days after operation, and X-ray film was taken regularly to detect the osteogenesis. ResultsThe mean external fixation time was 6.5 months (range, 3-12 months), and the mean external fixation index was 1.72 months/cm (range, 1.14-2.15 months/cm). All patients were followed up for 35.4 months on average (range, 24-55 months). The bone union time was 3-11 months (mean, 6 months); and no recurrence of infection was observed. At last follow-up, the mean wrist range of motion (ROM) were 52.78° (range, 42-55°) in flexion and 46.53° (range, 40-60°) in extension; the mean elbow ROM were 139.23° (range, 130-150°) in flexion and 3.57° (range, 0-20°) in extension; and the mean forearm ROM were 76.68° (range, 68-90°) in pronation and 81.75° (range, 72-90°) in supination. ConclusionIlizarov technology for infected forearm nonunion can acquire satisfactory clinical results. Radical debridement is the key to control bone infection.