Objective To research the feasibility and effectiveness of percutaneous kyphoplasty (PKP) by improved injecting tube through unipedicular puncturing. Methods Between January 2012 and Junuary 2016, 60 cases (68 vertebrae) of osteoporotic vertebral compression fractures (OVCF) were treated. PKP was performed through unipedicular puncturing with routine injecting tube in 30 cases (34 vertebrae, routine group), and with improved injecting tube in 30 cases (34 vertebrae, improved group). There was no significant difference in age, gender, disease duration, fracture level, preoperative visual analogue scale (VAS), or vertebral height between 2 groups (P>0.05). The operation time, the volume of bone cement injected, preoperative and postoperative VAS, and preoperative and postoperative vertebral height, and postoperative distribution coefficient of bone cement were recorded and compared between 2 groups. Results Good healing of puncture points was achieved in 2 groups after PKP, and no serious complication occurred. There was no significant difference in operation time and the volum of bone cement injected between 2 groups (t=0.851,P=0.399;t=1.672,P=0.101). Bone cement leakage was observed in 2 cases of 2 groups respectively. The distribution coefficient of bone cement in routine group was significantly less than that in improved group (t=13.049,P=0.000). All patients were followed up 12-36 months (mean, 19 months). The postoperative VAS and vertebral height were significantly improved when compared with preoperative ones in 2 groups (P<0.05), but there was no significant difference in VAS between at 2 days after operation and at last follow-up, in vertebral height between at 2 days after operation and at 1 year after operation, and between 2 groups after operation (P>0.05). X-ray films showed vertebral compression fractures in 6 cases of routine group and in 1 case of improved group during follow-up. Conclusion PKP by improved injecting tube through unipedicular puncturing can improve the distribution of bone cement, restore the height and strength of vertebral body, and reduce the incidence of re-fracture.
Objective To evaluate the effectiveness of percutaneous vertebroplasty (PVP) in the treatment of osteoporotic vertebral compression fracture (OVCF) through unilateral puncture of extreme extrapedicular approach and bilateral injection of bone cement. Methods The clinical data of 156 patients with OVCF who met the selection criteria between January 2014 and January 2016 were retrospectively analyzed. All patients were treated with PVP through unilateral puncture. According to different puncture methods, the patients were divided into two groups. In group A, 72 cases were performed PVP through the unilateral puncture of extreme extrapedicular approach and bilateral injection of bone cement, while in group B, 84 cases were performed PVP through the unilateral puncture of transpedicular approach. There was no significant difference in general data of gender, age, weight, bone mineral density, lesion segment, and disease duration between the two groups (P>0.05). The radiation exposure time, operation time, volume of bone cement injection, rate of bone cement leakage, pre- and post-operative visual analogue scale (VAS) score and local Cobb angle were recorded and compared between the two groups. Results There was no significant difference in radiation exposure time and operation time between the two groups (P>0.05), but the volume of bone cement injection in group A was significantly more than that in group B (t=20.024, P=0.000). Patients in both groups were followed up 24-32 months (mean, 26.7 months). There were 9 cases (12.5%) and 10 cases (11.9%) of cement leakage in group A and B, respectively. There was no significant difference in the incidence (χ2=0.013, P=0.910). No neurological symptoms and discomfort was found in the two groups. The VAS scores of the two groups were significantly improved after operation (P<0.05). There was no significant difference in local Cobb angle between before and after operation in group A (P>0.05); but the significant difference was found in local Cobb angle between at 2 years after operation and other time points in group B (P<0.05). The VAS score and local Cobb angle in group A were significantly better than those in group B at 2 years after operation (P<0.05). Conclusion It is simple, safe, and feasible to use the unilateral puncture of extreme extrapedicular approach and bilateral injection of bone cement to treat OVCF. Compared with the transpedicular approach, the bone cement can be distributed bilaterally in the vertebral body without prolonging the operation time and radiation exposure time, and has an advantage of decreasing long-term local Cobb angle losing of the fractured vertebrae.
ObjectiveTo discuss the safety and effectiveness of the improved technique by comparing the effects of low temperature bone cement infusion before and after the improvement in the percutaneous vertebroplasty (PVP).MethodsThe clinical data of 170 patients (184 vertebrae) with osteoporotic vertebral compression fracture who met the selection criteria between January 2016 and January 2018 were retrospectively analyzed. All patients were treated with PVP by low-temperature bone cement perfusion technology. According to the technical improvement or not, the patients were divided into two groups: the group before the technical improvement (group A, 95 cases) and the group after the technical improvement (group B, 75 cases). In group A, the patients were treated by keeping the temperature of bone cement at 0℃ and parallel puncture; in group B, the patients were treated by increasing the temperature of bone cement or reducing the time of bone cement in ice salt water and cross puncture. There was no significant difference in gender, age, disease duration, T value of bone mineral density, operative segment, and preoperative vertebral compression rate, visual analogue scale (VAS) score between the two groups (P>0.05). CT examination was performed immediately after operation, and the leakage rate of bone cement was calculated. The amount of bone cement perfusion and the proportion of bone cement in contact with the upper and lower endplates at the same time were compared between the two groups. The vertebral compression rate was calculated and the VAS score was used to evaluate the pain before operation, at immediate after operation, and last follow-up.ResultsThere was no complication such as incision infection, spinal nerve injury, or pulmonary embolism in both groups. There was no significant difference in the amount of bone cement perfusion between groups A and B (t=0.175, P=0.861). There were 38 vertebral bodies (36.89%) in group A and 49 vertebral bodies (60.49%) in group B exposed to bone cement contacting with the upper and lower endplates at the same time, showing significant difference (χ2=10.132, P=0.001). Bone cement leakage occurred in 19 vertebral bodies (18.45%) in group A and 6 vertebral bodies (7.41%) in group B, also showing significant difference (χ2=4.706, P=0.030). The patients in group A and group B were followed up (13.3±1.2) months and (11.5±1.1) months, respectively. The vertebral compression rates of the two groups at immediate after operation were significantly lower than those before operation (P<0.05), but the vertebral compression rate of group A at last follow-up was significantly higher than that at immediate after operation (P<0.05), and there was no significant difference in group B between at immediate after operation and at last follow-up (P>0.05). The VAS scores of the two groups at immediate after operation were significantly lower than those before operation (P<0.05); but the VAS scores of group A at last follow-up were significantly higher than those at immediate after operation (P<0.05) and there was no siginificant difference in group B (P>0.05). There was no significant difference in VAS scores between the two groups at immediate after operation (t=0.380, P=0.705); but at last follow-up, VAS score in group B was significantly lower than that in group A (t=3.627, P=0.000).ConclusionThe improved advanced low-temperature bone cement perfusion technology during PVP by increasing the viscosity of bone cement combined with cross-puncture technology, can reduce bone cement leakage, improve the distribution of bone cement in the vertebral body, and reduce the risk of vertebral collapse, and achieve better effectiveness.
ObjectiveTo compare the effect of percutaneous kyphoplasty (PKP) with different phases bone cement for treatment of osteoporotic vertebral compression fracture (OVCF).MethodsThe clinical data of 219 OVCF patients who treated with PKP and met the selection criteria between June 2016 and May 2018 were retrospectively analyzed. According to the different time of intraoperative injection of bone cement, they were divided into observation group [116 cases, intraoperative injection of polymethyl methacrylate (PMMA) bone cement in low-viscosity wet-sand phase)] and control group (103 cases, intraoperative injection of PMMA bone cement in low-viscosity wire-drawing phase). There was no significance in general date of gender, age, disease duration, body mass index, bone mineral density T value, fracture vertebral body, preoperative fracture severity of the responsible vertebral body, anterior height ratio of the responsible vertebral body, preoperative pain visual analogue scale (VAS) score, and Oswestry disability index (ODI) between the two groups (P>0.05). The VAS score and ODI score were used to evaluate the improvement of patients’ symptoms at immediate, 2 days, 3 months after operation and at last follow-up. At 1 day, 3 months after operation, and at last follow-up, X-ray film and CT of spine were reexamined to observe the distribution of bone cement in the vertebral body, bone cement leakage, and other complications. During the follow-up, the refracture rate of the responsible vertebral body and the fracture rate of the adjacent vertebral body were recorded.ResultsThe injection amount of bone cement in the observation group and control group were (4.53±0.45) mL and (4.49±0.57) mL, respectively, showing no significant difference between the two groups (t=1.018, P=0.310). Patients in both groups were followed up 6-18 months (mean, 13.3 months). There were 95 cases (81.9%) and 72 cases (69.9%) of the bone cement distribution range more than 49% of the cross-sectional area of the vertebral body in the observation group and the control group, respectively, showing significant difference in the incidence between the two groups (χ2=4.334, P=0.037). The VAS score and ODI score of the postoperative time points were significantly improved compared with those before operation (P<0.05), and there were significant differences among the postoperative time points (P<0.05). The VAS score and ODI score of the observation group were significantly better than those of the control group (P<0.05) at immediate, 2 days, and 3 months after operation, and there was no significant difference between the two groups at last follow-up (P>0.05). At 1 day after operation, the cement leakage occurred in 18 cases of the observation group (8 cases of venous leakage, 6 cases of paravertebral leakage, 4 cases of intradiscal leakage) and in 22 cases of the control group (9 cases of venous leakage, 8 cases of paravertebral leakage, 5 cases of intradiscal leakage). There was no significant difference between the two groups (P>0.05). During the follow-up, 5 cases (4.3%) in the observation group, 12 cases (11.7%) in the control group had responsible vertebral refracture, and 6 cases (5.2%) in the observation group and 14 cases (13.6%) in the control group had adjacent vertebral fracture, the differences were significant (χ2=4.105, P=0.043; χ2=4.661, P=0.031).ConclusionBone cement injection with wet-sand phase in PKP is beneficial for the bone cement evenly distributed, strengthening the responsible vertebral, relieving the short-term pain after operation, decreasing the rate of responsible vertebral refracture and adjacent vertebral fracture without increasing the incidence of relevant complications and can enhance the effectiveness.
ObjectiveTo evaluate the safety and effectiveness of robot-guided percutaneous kyphoplasty (PKP) in treatment of multi-segmental thoracolumbar osteoporotic vertebral compression fracture (OVCF).MethodsA clinical data of 63 cases with multi-segmental thoracolumbar OVCF without neurologic deficit treated with PKP between October 2017 and February 2019 were analyzed retrospectively. The patients were divided into robot-guided group (33 cases) and traditional fluoroscopy group (30 cases). There was no significant difference in gender, age, fracture segment, bone mineral density, and preoperative visual analogue scale (VAS) score, midline vertebral height, and Cobb angle between the two groups (P>0.05). The time to establish the tunnel, the times of fluoroscopy, the dose of fluoroscopy, the deviation of puncture, the distribution of bone cement, the leakage of bone cement, the puncture angle, and the postoperative VAS score, midline vertebral height, and Cobb angle were recorded and compared.ResultsThe patients in two groups were followed up 11-13 months (mean, 12 months). Compared with traditional fluoroscopy group, the time to establish the tunnel, the times and dose of fluoroscopy in robot-guided group were significantly lower, the deviation of puncture was slighter, the distribution of bone cement was better, and the puncture angle was larger, the differences between the two groups were significant (P<0.05). There were 8 segments (9.3%, 8/86) of bone leakage in robot-guided group and 17 segments (22.6%, 17/75) in traditional fluoroscopy group, the difference between the two groups was significant (χ2=5.455, P=0.020). There was no significant difference in VAS score, the midline vertebral height, and Cobb angle between the two groups at 2 days after operation and last follow-up (P>0.05).ConclusionRobot-guided PKP in treatment of multi-segmental thoracolumbar OVCF can shorten the operation time, improve the accuracy of puncture, reduce the times and dose of fluoroscopy, reduce the leakage of bone cement, and achieve better cement distribution.
ObjectiveTo compare the effectiveness of robot assisted and C-arm assisted percutaneous kyphoplasty (PKP) in the treatment of single/double-segment osteoporotic vertebral compression fracture (OVCF).MethodsThe clinical data of 108 cases of single/double-segment OVCF who met the selection criteria between May 2018 and October 2019 were retrospectively analyzed. There were 65 cases of single-segment fractures, of which 38 cases underwent “TiRobot” orthopedic robot-assisted PKP (robot group), 27 cases underwent C-arm X-ray machine fluoroscopy-assisted PKP (C-arm group). There were 43 cases of double-segment fractures, including 21 cases in robot group and 22 cases in C-arm group. There was no significant difference in gender, age, T value of bone mineral density, fracture segment distribution, time from injury to operation, and preoperative visual analogue scale (VAS) score, vertebral kyphosis angle (VKA), and height of fractured vertebra (HFV) in the patients with single/double-segments fractures between robot group and C-arm group (P>0.05). The operation time, the fluoroscopy frequency of the surgeons and the patient, the fluoroscopy exposure time of the surgeons and the patient, the radiation dose of the C-arm; the VAS scores, VKA, HFV before operation, at 1 day and 6 months after operation; and the complications in the two groups were recorded and compared.ResultsAll patients underwent surgery successfully. The operation time of the single-segment robot group was significantly longer than that of the C-arm group (t=5.514, P=0.000), while the operation time of the double-segment robot group was not significantly different from that of the C-arm group (t=1.892, P=0.205). The single/double-segment robot group required three-dimensional scanning, so the fluoroscopy frequency, fluoroscopy exposure time, and radiation dose of C-arm received by the patient were significantly higher than those of the C-arm group (P<0.05); the fluoroscopy frequency and the fluoroscopy exposure time received by the surgeons were significantly less than those of the C-arm group (P<0.05). There was no infection, embolism, neurological injury, and adjacent segmental fractures. The single/double-segment robot group showed lower rate of cement leakage when compared with the C-arm group (P<0.05), all the cases of cement leakage happened outside the spinal canal. The VAS score, VKA, and HFV of the single/double-segment robot group and the C-arm group were significantly improved at 1 day and 6 months after operation (P<0.05), and the VAS score at 6 months after operation was further improved compared with that at 1 day after operation (P<0.05). At 1 day and 6 months after operation, there was no significant difference in VAS score between the single/double-segment robot group and the C-arm group (P>0.05). The VKA and HFV of robot group were significantly better than those of the C-arm group (P<0.05).ConclusionFor single/double-segment OVCF, robot assisted PKP has more advantages in correcting VKA and HFV, reducing fluoroscopy exposure of surgeons and bone cement leakage rate; C-arm assisted PKP has more advantages in reducing the operation time of single-segment OVCF and fluoroscopy exposure of patients during operation.
ObjectiveTo investigate the effectiveness of synchronous unilateral percutaneous kyphoplasty (PKP) in the treatment of double noncontiguous thoracolumbar osteoporotic vertebral compression fracture (OVCF). MethodsBetween December 2018 and September 2020, 27 patients with double noncontiguous thoracolumbar OVCF were treated by synchronous unilateral PKP. There were 11 males and 16 females, with an average age of 75.4 years (range, 66-92 years). The fractures were caused by falls in 22 cases and sprains in 5 cases. The time from injury to hospital admission was 0.5-7.0 days, with an average of 2.1 days. The fractured vertebrae located at T9 in 2 cases, T10 in 3 cases, T11 in 10 cases, T12 in 15 cases, L1 in 12 cases, L2 in 6 cases, L3 in 4 cases, and L4 in 2 cases. The volume of bone cement injected into each vertebral body, operation time, and intraoperative fluoroscopy times were recorded. Anteroposterior and lateral X-ray films of thoracolumbar spine were taken to observe the anterior height of the injured vertebra, the Cobb angle of kyphosis, and the diffusion and good distribution rate of bone cement in the thoracolumbar spine. Visual analogue scale (VAS) score and Oswestry disability index (ODI) were used to evaluate the pain and functional improvement. ResultsAll operations completed successfully. The operation time was 34-70 minutes, with an average of 45.4 minutes. The intraoperative fluoroscopy was 21- 60 times, with an average of 38.6 times. The volume of bone cement injected into each vertebral body was 2-9 mL, with an average of 4.3 mL. All patients were followed up 6-21 months, with an average of 11.3 months. X-ray film reexamination showed that the anterior height of the injured vertebra and Cobb angle at each time point after operation were significantly improved than those before operation (P<0.05), and there was no significant difference between different time points after operation (P>0.05). The distribution of bone cement was excellent in 40 vertebral bodies, good in 13 vertebral bodies, and poor in 1 vertebral body, and the excellent and good rate was 98.1% (53/54). The pain of all patients significantly relieved or disappeared, and the function improved. The VAS score and ODI at each time point after operation were significantly lower than those before operation (P<0.05), and there was no significant difference between different time points after operation (P>0.05).ConclusionFor the double noncontiguous thoracolumbar OVCF, the synchronous unilateral PKP has the advantages of simple puncture, less trauma, less intraoperative fluoroscopy, shorter operation time, satisfactory distribution of bone cement, etc. It can restore the height of the vertebral body, correct the kyphotic angle, significantly alleviate the pain, and improve the function.
ObjectiveTo evaluate the effectiveness of orthopedic robot with modified tracer fixation (short for modified orthopedic robot) assisted percutaneous kyphoplasty (PKP) in treatment of single-segment osteoporotic vertebral compression fracture (OVCF). Methods The clinical data of 155 patients with single-segment OVCF who were admitted between December 2017 and January 2021 and met the selection criteria was retrospectively analyzed. According to the operation methods, the patients were divided into robot group (87 cases, PKP assisted by modified orthopedic robot) and C-arm group (68 cases, PKP assisted by C-arm X-ray fluoroscopy). There was no significant difference in gender, age, body mass index, T value of bone mineral density, therapeutic segment, grade of vertebral compression fracture, and preoperative visual analogue scale (VAS) score, midline vertebral height, and Cobb angle between the two groups (P>0.05). The effectiveness evaluation indexes of the two groups were collected and compared. The clinical evaluation indexes included the establishment time of working channel, dose of intraoperative fluoroscopy, the amount of injected cement, VAS score before and after operation, and the occurrence of complications. The imaging evaluation indexes included the degree of puncture deviation, the degree of bone cement diffusion, the leakage of bone cement, the midline vertebral height and the Cobb angle before and after operation. Results The establishment time of working channel in robot group was significantly shorter than that in C-arm group, and the dose of intraoperative fluoroscopy was significantly larger than that in C-arm group (P<0.001). There was no significant difference in the amount of injected cement between the two groups (t=1.149, P=0.252). The patients in two groups were followed up 10-14 months (mean, 12 months). Except that the intraoperative VAS score of the robot group was significantly better than that of the C-arm group (P<0.05), there was no significant difference between the two groups at other time points (P>0.05). No severe complication such as infection, spinal cord or nerve injury, and pulmonary embolism occurred in the two groups. Five cases (5.7%) in robot group and 7 cases (10.2%) in C-arm group had adjacent segment fracture, and the difference in incidence of adjacent segment fracture between the two groups was not significant (χ2=1.105, P=0.293). Compared with C-arm group, the deviation of puncture and the diffusion of bone cement at 1 day after operation, the midline vertebral height and Cobb angle at 1 month after operation and last follow-up were significantly better in robot group (P<0.05). Eight cases (9.1%) in the robot group and 16 cases (23.5%) in the C-arm group had cement leakage, and the incidence of cement leakage in the robot group was significantly lower than that in the C-arm group (χ2=5.993, P=0.014). There was no intraspinal leakage in the two groups. ConclusionCompared with traditional PKP assisted by C-arm X-ray fluoroscopy, modified orthopedic robot-assisted PKP in the treatment of single-segment OVCF can significantly reduce intraoperative pain, shorten the establishment time of working channel, and improve the satisfaction of patients with operation. It has great advantages in reducing the deviation of puncture and improving the diffusion of bone cement.
Objective To evaluate the effectiveness of robot-assisted percutaneous vertebroplasty (PVP) in the treatment of osteoporotic vertebral compression fracture (OVCF) in the elderly. Methods The clinical data of 90 elderly patients with OVCF treated in Sichuan Science City Hospital between June 2019 and March 2021 were retrospectively analyzed. The patients were divided into robot-assisted group (40 cases) and C-arm-assisted group (50 cases). The pre- and post-operative Visual Analogue Scale (VAS) score, pre- and post-operative Oswestry Disability Index (ODI) score, intraoperative cement leakage, intraoperative fluoroscopy frequency, operation time, and the loss of hemoglobin were recorded and compared between the two groups. Results The incidence of intraoperative cement leakage (5% vs. 20%), intraoperative fluoroscopy frequency [(18.3±3.2) vs. (41.3±7.8) times], operation time [(28.3±4.6) vs. (43.2±7.3) min] and the loss of hemoglobin [(7.2±2.0) vs. (15.2±4.4) g/L] of the robot-assisted group were less than those of the C-arm-assisted group (P<0.05). There was no statistically significant difference between the two groups in the decrease of VAS score or ODI score (3.63±1.64 vs. 3.40±1.65, P>0.05; 50.70±4.95 vs. 52.10±6.69, P>0.05). Conclusions Robot-assisted PVP for elderly patients with OVCF can significantly reduce the risk of cement leakage, shorten the operation time, reduce the intraoperative fluoroscopy frequency, and reduce the surgical hidden blood loss. It can be used for clinical promotion and application.
Objective To explore the effectiveness of unilateral percutaneous vertebroplasty (PVP) through mild side and severe side approaches in the treatment of elderly osteoporotic vertebral compression fracture (OVCF). Methods The clinical data of 100 patients with OVCF with symptoms on one side who were admitted between June 2020 and June 2021 and met the selection criteria were retrospectively analyzed. The patients were divided into the severe side approach group (group A) and the mild side approach group (group B) according to the cement puncture access during PVP, with 50 cases in each group. There was no significant difference between the two groups in terms of general information such as gender composition, age, body mass index, bone density, damaged segments, disease duration, and chronic comorbidities (P>0.05). The lateral margin height of the vertebral body on the operated side in group B was significantly higher than that of group A (P<0.001). The pain level and spinal motor function were evaluated using the pain visual analogue scale (VAS) score and Oswestry disability index (ODI) before operation, at 1 day, 1 month, 3 months, and 12 months after operation in both groups, respectively. Results No intraoperative or postoperative complications such as bone cement allergy, fever, incision infection, and transient hypotension occurred in both groups. Four cases of bone cement leakage occurred in group A (3 cases of intervertebral leakage and 1 case of paravertebral leakage), and 6 cases of bone cement leakage occurred in group B (4 cases of intervertebral leakage, 1 case of paravertebral leakage, and 1 case of spinal canal leakage), and none of them had neurological symptoms. Patients in both groups were followed up 12-16 months, with a mean of 13.3 months. All fractures healed and the healing time ranged from 2 to 4 months, with a mean of 2.9 months. The patients had no complication related to infection, adjacent vertebral fracture, or vascular embolism during follow-up. At 3 months postoperatively, the lateral margin height of the vertebral body on the operated side in groups A and B were improved when compared with preoperative ones, and the difference between pre- and post-operative lateral margin height of the vertebral body in group A was higher than that in group B, all showing significant differences (P<0.001). The VAS scores and ODI in both groups improved significantly at all postoperative time points when compared with those before operation, and further improved with time after operation (P<0.05). The differences in VAS scores and ODI between the two groups before operation were not significant (P>0.05); VAS scores and ODI in group A were significantly better than those in group B at 1 day, 1 month, and 3 months after operation (P<0.05), but no significant difference was found between the two groups at 12 months after operation (P>0.05). Conclusion Patients with OVCF have more severe compression on the more symptomatic side of the vertebral body, and patients with PVP have better pain relief and better functional recovery when cement is injected through the severe symptomatic side.