Bone marrow-derived mesenchymal stem cell (BMSC) transplantation is one of the most popular therapeutic measures in severe acute pancreatitis (SAP). However, technical challenges and ethical concern have hindered its clinical application. Paracrine factor, as a new safe and easy handing therapeutic measure, can work comparably effective as BMSC transplantation in SAP therapy, but bio-safe risks could be greatly reduced. In this paper, we reviewed the therapeutic effect and potential mechanism of paracrine factors in the treatment of SAP. The injection of paracrine factors yielded from cultured cell suspension will be a new cell therapeutic measure for SAP.
Objective To summarize the recent advances in the research of adipose-derived stem cells (ADSCs) for the treatment of refractory wounds. Methods The related literature about using ADSCs for treating refractory wounds in recent years was reviewed, and their repair mechanism and treatment progress were summarized in detail. Results Tremendous progress has been achieved in using ADSCs in combination with single stent technology, sheet technology, and other methods to promote the healing of refractory wounds. ADSCs can accelerate wound angiogenesis and promote the healing of refractory wounds through its own mechanisms of paracrine, proangiogenic, anti-oxidative and apoptosis. Conclusion With the advantages of adequate sources, easy to extract and culture, non-immune rejection, multidirectional differentiation potential, and significant angiogenic potential, ADSCs has become the ideal seed cells of tissue regeneration. However, it is necessary to improve stem cell transmission technology and develop biomaterials for clinical application in order to improve the refractory wounds healing.
ObjectiveTo summarize recent progress in adipose tissue acting as a more efficient and ideal therapy to facilitate wound repair and evaluate the therapeutic values of adipose tissue.MethodsThe related literature about adipose tissue for wound healing in recent years was reviewed and analyzed.ResultsEnormous studies focus on the capacity of adipose tissue to accelerate wound healing including cellular components, extracellular matrix, and paracrine signaling have been investigated.ConclusionAdipose tissue has generated great interest in recent years because of unique advantages such as abundant and accessible source, thriven potential to enhance the regeneration and repair of damaged tissue. However, there is still a need to explore the mechanism that adipose tissue regulates cellular function and tissue regeneration in order to facilitate clinical application of adipose tissue in wound healing.
ObjectiveTo review the advances in utilizing paracrine effect of stem cells in knee osteoarthritis (OA) treatment.MethodsThe researches in applying stem cells derived conditioned medium, extracellular matrix, exosomes, and microvesicles in knee OA treatment and cartilage repair were reviewed and analyzed.ResultsThe satisfying outcomes of using different products of stem cells paracrine effect in knee OA condition as well as cartilage defect is revealed in studies in vitro and in vivo. The mechanism including suppressing the intraarticular inflammation, the apoptosis of chondrocytes, and the degradation of cartilage matrix, while enhancing the synthesis of cartilage matrix, the differentiation of in-situ stem cells into chondrocytes and the migration to the affected area. The effectiveness can be further improved supplemented with the tissue engineering methods or gene modification.ConclusionCompared with the traditional stem cell therapy, applying the products from paracrine effect of stem cells in knee OA treatment is more economical and safer, presenting great potential in clinical practice.