Objective To investigate the clinical features, treatment methods, and prognostic influence factors of patients with malignant peripheral nerve sheath tumor (MPNST). MethodsA retrospective analysis was conducted on 96 MPNST patients treated between January 1, 2015 and December 31, 2021. There were 46 males and 50 females, aged between 15 and 87 years (mean, 48.2 years). The tumors were located in the trunk in 50 cases, extremities in 39 cases, and head and neck in 7 cases. The maximum tumor diameter was <5 cm in 49 cases, ≥5 cm in 32 cases, with 15 cases missing data. Tumor depth was deep in 77 cases and superficial in 19 cases. The Fédération Nationale des Centres de Lutte Contre le Cancer (FNCLCC) histological grading was G1 in 9 cases, G2 in 12 cases, and G3 in 34 cases, with 41 cases missing data. There were 37 recurrent MPNST cases, 32 cases with neurofibromatosis type 1 (NF1), and 26 cases in stage Ⅳ. Postoperative adjuvant radiotherapy was administered to 25 patients, perioperative chemotherapy to 45 patients, and anlotinib-targeted therapy to 30 patients. R0 resection was achieved in 73 cases. Patients were divided into groups based on the presence or absence of NF1, and baseline data between the two groups were compared. Kaplan-Meier curves were generated to assess disease-free survival (DFS) and overall survival (OS) based on various factors (age, gender, presence of NF1, recurrent MPNST, stage Ⅳ MPNST, FNCLCC grade, R0 resection, tumor location, tumor size, tumor depth, perioperative chemotherapy, postoperative adjuvant radiotherapy, and anlotinib-targeted therapy), and differences between survival curves were analyzed using the Log-Rank test. Multivariate COX proportional hazards regression was used to identify independent prognostic factors for MPNST. Results Patients with NF1 had a significantly higher proportion of superficial tumors and lower FNCLCC grade compared to those without NF1 (P<0.05); no significant difference was found for other variables (P<0.05). Kaplan-Meier analysis showed that recurrent MPNST, stage Ⅳ MPNST, FNCLCC grade, R0 resection, perioperative chemotherapy, and anlotinib-targeted therapy were factors influencing 1-year DFS (P<0.05), while stage Ⅳ MPNST, FNCLCC grade, and perioperative chemotherapy were factors affecting 3-year OS (P<0.05). Multivariate COX proportional hazards regression analysis revealed that recurrent MPNST and high-grade FNCLCC (G3) were independent prognostic factors for 1-year DFS (P<0.05), while stage Ⅳ MPNST, superficial tumor depth, age over 60 years, postoperative adjuvant radiotherapy, and anlotinib-targeted therapy were independent prognostic factors for 3-year OS (P<0.05). Conclusion MPNST patients with NF1 tend to have more superficial tumors and lower FNCLCC grades. FNCLCC grade, R0 resection, and adjuvant therapies, including radiotherapy and anlotinib-targeted therapy, are closely associated with MPNST prognosis. Complete surgical resection should be prioritized in clinical management, along with adjuvant treatments such as radiotherapy and targeted therapy of anlotinib to improve patient outcomes.
ObjectiveTo investigate the effects of exosomes from adipose-derived stem cells (ADSCs) on peripheral nerve regeneration, and to find a new treatment for peripheral nerve injury. MethodsThirty-six adult Sprague Dawley (SD) rats (male or female, weighing 220-240 g) were randomly divided into 3 groups (n=12). Group A was the control group; group B was sciatic nerve injury group; group C was sciatic nerve injury combined with exosomes from ADSCs treatment group. The sciatic nerve was only exposed without injury in group A, and the sciatic nerve crush injury model was prepared in groups B and C. The SD rats in groups A and B were injected with PBS solution of 200 μL via tail veins; the SD rats in group C were injected with pure PBS solution of 200 μL containing 100 μg exosomes from ADSCs, once a week and injected for 12 weeks. At 1 week after the end of the injection, the rats were killed and the sciatic nerves were taken at the part of injury. The sciatic nerve fiber bundles were observed by HE staining; the SCs apoptosis of the sciatic nerve tissue were detected by TUNEL staining; the ultrastructure and SCs autophagy of the sciatic nerve were observed by transmission electron microscope. ResultsGross observation showed that there was no obvious abnormality in the injured limbs of group A, but there were the injured limbs paralysis and muscle atrophy in groups B and C, and the degree of paralysis and muscle atrophy in group C were lighter than those in group B. HE staining showed that the perineurium of group A was regular; the perineurium of group B was irregular, and there were a lot of cell-free structures and tissue fragments in group B; the perineurium of group C was more complete, and significantly well than that of group B. TUNEL staining showed that the SCs apoptosis was significantly increased in groups B and C than in group A, in group B than in group C (P<0.01). Transmission electron microscope observation showed that the SCs autophagosomes in groups B and C were significantly increased than those in group A, but the autophagosomes in group C were significantly lower than those in group B. ConclusionThe exosomes from ADSCs can promote the peripheral nerve regeneration. The mechanism may be related to reducing SCs apoptosis, inhibiting SCs autophagy, and reducing nerve Wallerian degeneration.
Schwanns cell (SC) was isolated from sciatic nerve of adult rat with Wallerine degeneration. After culture, SC-serum free culture media (SCSFCM) was obtained. By ultrafiltration with PM-10 Amicon Membrane, electrophoresis with DiscPAGE,and electrical wash-out with Biotrap apparatus, D-band protein was isolated from the SC-SFCM. The D-band protein in the concentration of 25ng/ml could affect the survival of the spinal anterior horn neuron in vitro, prominently and itsactivity was not changed after being frozen. The molecular weight of the protein ranged from 43 to 67 Kd. The D-band protein might be a neurotrophic substancedifferent from the known SCderived neurotrophic factors (NTF). Its concentration with biological activity was high enough to be detected. The advantages of MTT in assessment of NTF activity were also discussed.
ObjectiveTo describe the research progress of silk-based biomaterials in peripheral nerve repair and provide useful ideals to accelerate the regeneration of large-size peripheral nerve injury. Methods The relative documents about silk-based biomaterials used in peripheral nerve regeneration were reviewed and the different strategies that could accelerate peripheral nerve regeneration through building bioactive microenvironment with silk fibroin were discussed. Results Many silk fibroin tissue engineered nerve conduits have been developed to provide multiple biomimetic microstructures, and different microstructures have different mechanisms of promoting nerve repair. Biomimetic porous structures favor the nutrient exchange at wound sites and inhibit the invasion of scar tissue. The aligned structures can induce the directional growth of nerve tissue, while the multiple channels promote the axon elongation. When the fillers are introduced to the conduits, better growth, migration, and differentiation of nerve cells can be achieved. Besides biomimetic structures, different nerve growth factors and bioactive drugs can be loaded on silk carriers and released slowly at nerve wounds, providing suitable biochemical cues. Both the biomimetic structures and the loaded bioactive ingredients optimize the niches of peripheral nerves, resulting in quicker and better nerve repair. With silk biomaterials as a platform, fusing multiple ways to achieve the multidimensional regulation of nerve microenvironments is becoming a critical strategy in repairing large-size peripheral nerve injury. Conclusion Silk-based biomaterials are useful platforms to achieve the design of biomimetic hierarchical microstructures and the co-loading of various bioactive ingredients. Silk fibroin nerve conduits provide suitable microenvironment to accelerate functional recovery of peripheral nerves. Different optimizing strategies are available for silk fibroin biomaterials to favor the nerve regeneration, which would satisfy the needs of various nerve tissue repair. Bioactive silk conduits have promising future in large-size peripheral nerve regeneration.
Objective To explore the clinical features, surgical treatment, and effectiveness of neurofibromas associated with neurofibromatosis type 1 (NF1). Methods A clinical data of 41 patients with NF1 admitted between December 2018 and April 2024 was retrospectively analyzed. There were 15 males and 26 females, with an average age of 27.5 years (range, 5-61 years). Only one type of neurofibroma existed in 3 patients and the rest of the patients had more than two types of neurofibromas. Fourteen patients had total resection of multiple cutaneous neurofibromas (CNF). Eighteen patients of diffuse neurofibromas underwent total, near-total, or subtotal resection. Among the 13 patients of localized nodular neurofibromas, 9 of benign tumors underwent total sub-capsular resection and 4 of malignant peripheral nerve sheath tumor (MPNST) underwent maginal resection, and only 1 underwent postoperative radiotherapy and chemotherapy. Among the 15 patients of plexiform neurofibromas (PNF), 5 patients underwent both superficial and deep PNF resection, 2 underwent the superficial PNF resection, and 8 underwent the large nodular lesions in the deep PNF resection. There were 8 MPNST, of which 7 cases underwent total sub-capsular resection and large tumor capsule resection under neurophysiological monitoring, and 1 case with the tumor located on the top of the head underwent wide resection and skin grafting. One patient underwent proton knife therapy after surgery, 2 patients did not receive radiotherapy, and the remaining patients received conventional radiotherapy. Results All patients were followed up after surgery, and the follow-up time was 3-66 months, with an average of 25.0 months. Patients with CNF recovered satisfactorily after surgery, and there was no recurrence during follow-up. Patients with diffuse neurofibromas relieved preoperative symptoms after surgery. Three patients with diffuse neurofibromas located in the head and face recurred during follow-up. The patients with benign localized nodular neurofibromas recovered well after surgery, and only 1 patient had transient regional neuralgia after surgery. Among the patients with MPNST, 2 patients died of recurrence and lung metastasis, while the remaining 2 patients had no recurrence and metastasis during follow-up. All preoperative symptoms disappeared in patients with benign PNF, and no tumor recurrence was observed during follow-up. Two patients with PNF located in the brachial plexus had difficulty in shoulder abduction after surgery, 1 patient with PNF located in vagus developed hoarseness after surgery. Among the 8 patients with MPNST in PNF, 1 died of lung metastases and 1 died of systemic failure. The remaining 6 patients were in stable condition during follow-up, and no tumor recurrence or metastasis was observed. Conclusion According to the clinical features of neurofibromas in patients with NF1, choosing appropriate surgical approaches can obtain good effectiveness. Because of the difficulty of completely resection, diffuse neurofibromas, especially those located in the head and face, are prone to recurrence after surgery. MPNST has the worst prognosis, high incidence of recurrence/metastasis, and short survival period. Total resection combined with radiotherapy can decrease local recurrence.
ObjectiveTo summarize the research progress of adipose-derived stem cells (ADSCs) in promoting the repair of peripheral nerve injury.MethodsThe related literature at home and abroad in recent years was widely reviewed, the mechanism of ADSCs promoting the repair of peripheral nerve injury was introduced, and its basic research progress was analyzed and summarized. Finally, the clinical transformation application of ADSCs in the treatment of peripheral nerve injury was introduced, the existing problems were pointed out, and the new treatment regimen was prospected.ResultsADSCs have the function of differentiation and paracrine, and their secreted neurotrophic factors, antiapoptosis, and antioxidant factors can promote the repair of peripheral nerve injury.ConclusionADSCs are rich in content and easy to obtain, which has a definite effectiveness on the repair of peripheral nerve injury with potential clinical prospect.
ObjectiveTo summarize the research status of mandibular sensory dysfunction after transoral endoscopic thyroidectomy vestibular approach (TOETVA), and explore its potential treatment methods and existing problems, and provide ideas and methods for future clinical treatments or research. MethodThe domestic and foreign literatures about peripheral nerve injury and its treatment after TOETVA were searched and reviewed. ResultsMental nerve injury was considered to be the main cause of mandibular sensory dysfunction after TOETVA. Due to the lack of unified definitions and assessment standards, the true incidence remained unclear. In order to reduce the risk of mental nerve injury, methods such as exposing the mental nerve and combining vestibular approaches during surgery had certain advantages. In terms of treatment, several methods promoting nerve repair were noteworthy, including B vitamins, nerve growth factors, physical therapy and so on. In addition, some auxiliary treatments of Traditional Chinese Medicine also showed effectiveness in promoting nerve regeneration. ConclusionsIt is essential to avoid damage to the mental nerve and mandibular tissues during surgery. For patients with significant complaints postoperatively, active treatment should be pursued. Establishing objective and quantifiable standards for evaluating mandibular sensory dysfunction and seeking effective clinical plans through a multidisciplinary approach may be the direction for future research.
Objective To review the research progress of graphene and its derivatives in repair of peripheral nerve defect. Methods The related literature of graphene and its derivatives in repair of peripheral nerve defect in recent years was extensively reviewed. Results It is confirmed by in vitro and in vivo experiments that graphene and its derivatives can promote cell adhesion, proliferation, differentiation and neurite growth effectively. They have good electrical conductivity, excellent mechanical properties, larger specific surface area, and other advantages when compared with traditional materials. The three-dimensional scaffold can improve the effect of nerve repair. Conclusion The metabolic pathways and long-term reaction of graphene and its derivatives in the body are unclear. How to regulate their biodegradation and explain the electric coupling reaction mechanism between cells and materials also need to be further explored.
Objective To review the mechanism and effects of cell autophagy in the pathophysiology changes of peripheral nerve injury. Methods The recent literature about cell autophagy in peripheral nerve injury and regeneration was extensively reviewed and summarized. Results The researches through drugs intervention and gene knockout techniques have confirmed that the Schwann cell autophagy influences the myelin degeneration, debris clearance, inflammatory cells infiltration, and axon regeneration through JNK/c-Jun pathway. To adjust autophagy process could slow down the Wallerian degeneration, maintain the integrity of injured nerve, while the effect on axon regeneration is still controversial. Conclusion The Schwann cell autophagy plays a key role in the pathophysiology changes of peripheral nerve injury, the further study of its mechanism could provide new methods for the therapy of peripheral nerve injury.
Objective To summarize application effect and clinical experience of multimodal intraoperative neurophysiological monitoring (IONM) technology in the surgery of neurofibromatosis type 1 (NF1) related peripheral nerve tumors. Methods A retrospective study was conducted on NF1 patients, who admitted between January 2019 and December 2023 and treated with peripheral nerve tumor resection surgery assisted by multimodal IONM technology. There were 49 males and 45 females. The age ranged from 5 to 78 years, with an average of 33.7 years. Tumor morphological classification included 71 cases of nodular type, 13 cases of diffuse type, and 10 cases of mixed type. Target tumors were distributed in craniofacial region (47 cases), neck (11 cases), trunk (12 cases), and limbs (24 cases). Preoperatively, 44 cases had no obvious neurological symptoms, while the remaining patients had neurological symptoms, including 15 cases of visual impairment, 5 cases of hearing impairment, 16 cases of somatic movement disorders, and 31 cases of somatic sensory disorders, of which 7 cases had more than one symptom. IONM plans were selected based on the relevant nerves and adjacent important structures of the target tumor, including visual evoked potential (17 cases), somatosensory evoked potential (44 cases), motor evoked potential (88 cases), and electromyogram (94 cases).Results All surgeries were successfully completed. Ninety-three patients underwent total/near total resection and 1 patient underwent palliative resection. Pathological examination showed 80 cases of neurofibroma and 14 cases of malignant peripheral nerve sheath tumors. Complications included 2 cases of hematoma and 3 cases of incision infection. All patients were followed up 3-61 months (median, 15 months). During follow-up, no significant changes in neurological symptoms or tumor recurrence were found. Among the patients with preoperative visual impairment, there were 14 cases with no improvement in symptoms and 1 with improvement after surgery. Among the patients with somatic movement disorders, there were 11 cases with no improvement in symptoms, 3 cases with improvement, 2 cases with aggravation, 4 newly onset cases, and 1 case with significant impact on daily life after surgery. Among the patients with somatic sensory disorders, there were 17 cases with no improvement in symptoms, 14 cases with improvement, and 13 newly onset cases. The patients with hearing impairment showed improvement after surgery. Conclusion The clinical manifestations of NF1 related peripheral nerve tumors are complex. Multimodal IONM technology can provide real-time detection of nerve provocation and damage. Surgical treatment with multimodal IONM technology is safe and can reduce complications.