west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "peroxisome proliferator-activated receptor gamma coactivator 1α" 1 results
  • Role and mechanism of peroxisome proliferator-activated receptor gamma coactivator 1α in inhibiting aortic valve interstitial cell activation

    Objective To investigate the role and mechanism of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) in the activation of aortic valve interstitial cells (AVICs) in aortic stenosis. Methods Isolating primary AVICs and stimulating their activation with transforming growth factor β1 (TGF-β1, 30 ng/mL), the expression of PGC-1α was detected. The activation of AVICs induced by TGF-β1 was observed after overexpression of PGC-1α by adenovirus or inhibition of PGC-1α function by GW9662. The possible downstream molecular mechanism of PGC-1α in AVICs activation was screened. Finally, the phenotype was further verified in primary human AVICs. Results The expression of PGC-1α decreased after the activation of AVICs induced by TGF-β1 (control group: 1.00±0.18; 24 h: 0.31±0.10; 48 h: 0.32±0.06; 72 h: 0.20±0.07; P<0.05). Specific overexpression of PGC-1α by adenovirus inhibited the activation of AVICs induced by TGF-β1 stimulation (periostin: 3.17±0.64 vs. 1.45±0.54, P<0.05; α-smooth muscle actin: 0.77±0.11 vs. 0.28±0.06, P<0.05). On the contrary, inhibition of PGC-1α function by GW9662 promoted the activation of AVICs (periostin: 2.20±0.68 vs. 7.99±2.50, P<0.05). Subsequently, it was found that PGC-1α might inhibit the activation of AVICs through downregulating the expression of calcium/calmodulin-dependent protein kinase (CAMK1δ) (0.97±0.04 vs. 0.74±0.11, P<0.05), and downregulating the expression of CAMK1δ alleviated the activation of AVICs (periostin: 1.76±0.11 vs. 0.99±0.20, P<0.05). The possible mechanism was that the activation of mammalian target of rapamycin (mTOR) signaling pathway was inhibited by reducing the accumulation of reactive oxygen species (ROS) (778.3±139.4 vs. 159.3±43.2, P<0.05). Finally, the protective effect of PGC-1α overexpression was verified in the activated phenotype of human AVICs (periostin: 2.73±0.53 vs. 1.63±0.14, P<0.05; connective tissue growth factor: 1.27±0.04 vs. 0.48±0.09, P<0.05). Conclusions The expression of PGC-1α significantly decreases during the activation of AVICs induced by TGF-β1. The overexpression of PGC-1α significantly inhibites the activation of AVICs, suggesting that PGC-1α plays a protective role in the activation of AVICs. The possible mechanism is that PGC-1α can inhibit the activation of CAMK1δ-ROS-mTOR pathway. In conclusion, interventions based on PGC-1α expression levels are new potential therapeutic targets for aortic stenosis.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content