Objective To investigate the effects of in-vitro monolayer culture and three-dimensional (3-D) alginate microsphere culture on the differentiation of normal human nucleus pulposus cells (NPCs), and to discuss the regulatory mechanism of restoring the phenotype of dedifferentiated NPCs by culturing resveratrol (RES) in 3-D alginate microsphere. Methods Normal human nucleus pulposus tissues were harvested for culture and identification of NPCs from 6 patients with burst lumbar vertebra fracture. NPCs at passages 1, 3, 5, and 7 in the in-vitro monolayer culture were harvested to observe the morphology, cell aging, and proteoglycan expression. The cell proliferation rates of NPCs at passage 1 in-vitro in monolayer culture and in 3-D alginate microsphere culture were detected. NPCs at passage 7 were randomly divided into 3-D alginate microsphere control group (group A), RES group (group B), silent mating type information regulation 2 homolog 1 (SIRT1)- small interfering RNA (siRNA) + RES group (group C), and negative control-siRNA + RES group (group D); and NPCs in the in-vitro monolayer culture was monolayer control group (group E). After corresponding treatment, Western blot was used for determining the protein expressions of SIRT1, Aggrecan, and collagen type II; real-time fluorescence quantitative PCR was used for detecting SIRT1 mRNA expression. Results The cultured cells were identified to be NPCs. Morphological observation, senescence-associated β-galactosidase (SA-β-gal) staining, and toluidine blue staining showed that dedifferentiation of normal NPCs tended to occur under continuous in-vitro monolayer culture, which was more obvious with increase of passage number. NPCs in 3-D alginate microsphere culture showed significantly lower proliferation rate than NPCs in the in-vitro monolayer culture (P lt; 0.05), but it could significantly improve the protein expressions of collagen type II and Aggrecan in dedifferentiated NPCs, showing significantly difference between groups E and A (P lt; 0.05). The protein expressions of SIRT1, collagen type II, and Aggrecan in group B were significantly improved when compared with that in group A (P lt; 0.05). Real-time fluorescence quantitative PCR and Western blot showed that the expressions of SIRT1 mRNA and proteins in group C were significantly inhibited after transfected with SIRT1-siRNA when compared with those in groups B and D (P lt; 0.05), and the protein expressions of collagen type II and Aggrecan in group C were significantly lower than those in groups B and D (P lt; 0.05). Conclusion Continuous in-vitro monolayer culture could efficiently cultivate numerous seeding NPCs, but it is liable to dedifferentiate. In 3-D alginate microsphere culture, RES could restore the phenotype of dedifferentiated NPCs and synthesize more extracellular matrix, which is related to the regulation of SIRT1.
ObjectiveTo explore the composition of intestinal microbiota between patients with fixed airflow obstruction asthma, reversible airflow obstruction asthma, and healthy control, and analyze the correlation between key differential bacterial distribution and clinical characteristics. MethodsFifteen patients with fixed airflow obstruction asthma (FAO) and 13 patients with reversible airflow obstruction asthma (RAO) were included, along with 11 matched healthy control subjects. Clinical data were collected, and lung function tests and induced sputum examination were performed. Blood and stool samples were tested to compare the gut microbiota status among the groups, and analyze the relationship between gut microbiota abundance and patients' blood routine, IgE levels, lung function, and induced sputum. Results The dominant bacterial compositions were similar in the three groups, but there were differences in the abundance of some species. Compared to the RAO group, the FAO group showed a significant increase in the genera of Bacteroides and Escherichia coli, while Pseudomonas was significantly decreased. The phylum Firmicutes was negatively correlated with the course of asthma, while the phylum Bacteroidetes and genus Bacteroides were positively correlated with the asthma course. Bacteroidetes was negatively correlated with Pre-BD FEV1/FVC, Pseudomonas was positively correlated with Pre-BD FEV1, Escherichia coli was negatively correlated with Post-BD FEV1/FVC, and Bacteroides was negatively correlated with Post-BD MMEF. The class Actinobacteria and the order Actinomycetales were negatively correlated with peripheral blood EOS%, while the order Enterobacteriales and the family Enterobacteriaceae were positively correlated with peripheral blood IgE levels. Furthermore, Actinobacteria and Actinomycetales were negatively correlated with induced sputum EOS%. Conclusions There are differences in the gut microbiota among patients with fixed airflow obstruction asthma, reversible airflow obstruction asthma, and healthy individuals. Bacteroides and Escherichia coli are enriched in the fixed airflow obstruction asthma group, while the Firmicutes are increased in the reversible airflow obstruction asthma group. These three microbiota may act together on Th2 cell-mediated inflammatory responses, influencing the process of airway remodeling, and thereby interfering with the occurrence of fixed airflow obstruction in asthma.
In this study, we aimed to investigate the influences of conditioned medium from human umbilical vein endothelial cells (HUVEC) on cancer stem cell phenotype of human hepatoma cells. HUVEC and human hepatoma cells (MHCC97H) were cultured, respectively, and then the MHCC97H cells were co-cultured with conditioned medium from HUVEC (EC-CM) with Transwell system. Anti-cancer drug sensitivity, colony-formation, migration/invasion ability, expression of cancer stem cell marker and sphere formation were performed to determine the cancer stem cell phenotype in MHCC97H cells. We found that MHCC97H cells co-cultured with EC-CM exhibited significantly higher colony-formation ability and lower sensitivity of anti-cancer drugs 5-FU and Cis. Transwell assay showed that treatment with EC-CM obviously increased migration and invasion of MHCC97H cells. Moreover, increased sphere forming capability and expression of CD133 in MHCC97H cells were observed after co-cultured with EC-CM. These results suggested that EC-CM could promote cancer stem cell phenotype of hepatoma cells.
To aggressively proliferate and metastasize, cancer cells are in extreme need of energy supply and nutrients. Therefore, a promising cancer therapy strategy is developed to target its hallmark feature of metabolism. Recent findings revealed the regulatory role of caveolin-1 (Cav-1), a structural protein of caveolae, in cancer metabolism. And low Cav-1 expression in tumor stroma was proved to be a central player of cancer malignant phenotype. Here, we summarized the progressions of studies on Cav-1, mitochondria and cancer metabolism to indicate that the altered metabolism induced by Cav-1 and mitochondria association is a major cause of cancer malignant phenotype.
ObjectiveTo explore the relationship of obesity with asthma control and airway inflammatory phenotype. MethodsA cross-sectional prospective study was conducted on 101 patients with asthma. Asthma control level was assessed by Asthma Control Test (ACT) and GINA. Furthermore, height and weight were measured and body mass index (BMI) was calculated. Lung function and sputum induction were performed, and differential cell count was obtained from induced sputum and peripheral blood. ResultsNinety eligible patients were divided into 3 groups as a normal-weight group (n=54), an over-weight group (n=21) and an obesity group (n=15). The asthma control levels were different among three groups (P=0.019 for ACT and P=0.014 for GINA, respectively). BMI was positively related to the number of neutrophils in induced sputum (r=0.29, P=0.039). Increased BMI deteriorated asthma control levels assessed by ACT[OR=1.84, 95% CI (1.04, 3.23), P=0.035] and GINA[OR=2.27, 95% CI (1.27, 4.07), P=0.006] in a dose-response manner. Obesity indicated poor asthma control assessed by ACT (P=0.015) and GINA (P=0.008) after adjusting for age, sex, duration of asthma, FEV1%pred, smoking, and the number of neutrophils in peripheral blood. ConclusionsIn Chinese individuals with asthma, neutrophilic inflammatory phenotype dominates the airway inflammation of obesity-associated asthma. Obesity is a risk factor that deteriorates asthma control level in a significant dose-response manner.
Objective To observe the effect of pilose antler polypeptides(PAP)on the apoptosis of rabbit marrow mesenchymal stem cells (MSCs) differentiated into chondrogenic phenotype by interleukin 1β (IL-1β) so as to optimize the seeding cells in cartilage tissue engineering. Methods The MSCs were separated from the nucleated cells fraction of autologus bone marrow by density gradient centrifuge and cultured in vitro. The MSCs were induced into chondrogenic phenotype by transforming growth factor β1(TGF-β1) and basic fibroblast growth factor(bFGF). According to different medias, the MSCs were randomly divided into four groups: group A as black control group, group B(100 ng IL-1β),group C(10 μg/ml PAP+100 ng IL-1β) and group D(100 ng/ml TGF-β1 +100 ng IL-1β). The samples were harvested and observed by morphology, flow cytometry analysis, RT-PCR and ELISA at 24, 48 and 72 hours. Results The intranuclear chromatin agglutinated into lump and located under nulear membranes which changed into irregular shapeat 24 hours. The intranuclear chromatin agglutinated intensifily at 48 hours. Then the nucear fragments agglutinated into apoptosic corpuscles at 72 hours in group B. The structure change of cells in groups C and D was later than that in group B, and the number of cells changed shape was fewer than that in group B. The structure change of cells in group A was not significant. The apoptosic rate of cells, the mRNA expression of Caspase-3 and the enzymatic activity of Caspase-3 gradually increased in group B, and there were significant differences compared with groups A,C and D(Plt;0.01). Conclusion Caspase-3 is involved in aoptosis of the MSCs differentiated into chondrogenic phenotype cultured in vitro. PAP could prevent from or reverse apoptosis of these MSCs by decreasing the expression of Caspase-3 and inhibiting the activity of Caspase-3.
ObjectiveThe clinical phenotypes and pathogenicity of isolated cone-rod dystrophy (CORD) caused by two novel complex heterozygous variants of the CEP290 gene were analyzed using high-resolution multi-mode imaging and gene detection techniques. MethodsA retrospective study. Two patients and two family members from a CORD family who were diagnosed by genetic testing at Henan Provincial People's Hospital in December 2021 were included in the study. All subjects underwent best-corrected visual acuity (BCVA), color fundus photography, autofluorescence, swept-source optical coherence tomography (SS-OCT), adaptive optics fundus imaging, static threshold field, full field and multiple electroretinogram (ERG) examination, as well as other systemic examinations throughout the body. The peripheral venous blood of the subjects was collected, and the whole genome DNA was extracted. DNA sequencing was performed using the Inherited Retinal Disease Kit PS400, and Sanger verification and pedigree co-segregation analysis were performed on the suspected pathogenic mutation sites. Validation was performed by Sanger sequencing, pathogenicity analysis was performed in accordance with the American College of Medical Genetics and Genomics (ACMG) guidelines. Conservation of variation among different species was analyzed by GERP++, Clustal Omega and Weblogo. ResultsBoth patients were male, and their ages were 21 and 29 years old, respectively. The right eye and left eye about BCVAs were 0.7, 0.4 and 0.3, 0.4, respectively. The full field and multiple electroretinogram ERG showed a decreased function of cones and rods, especially cones. SS-OCT showed thinning of the outer nuclear layer of macular, and attenuation of ellipsoid zone reflectivity in B-scan. Adaptive optics fundus imaging examination showed that the arrangement of cone cells in the fovea of the fovea was disordered and the density decreased, and the retinal pigment epithelial cells were seen through the atrophy of cone cells in some areas at 10°visual angle. No obvious abnormality was found in other systemic examinations of the whole body. Genetic testing showed that 2 novel compound heterozygous variants c.950T >A (p.Leu317*) (M1) and c.4144_4149del (p.Tyr1382_Glu1383del) (M2) in CEP290 were found in two patients. The first variant was predicted to be harmful in MutationTaster and CADD. GERP++ showed highly conserved among different species. The pathogenicity of the variant was suspected to be likely pathogenic according to ACMG guidelines. The pathogenicity of the second variant was uncertain significance. The parents of the proband had no similar ocular abnormalities. Verified by Sanger sequencing, it was consistent with co-separation in the family. ConclusionsPatients with pure CORD caused by CEP290 gene mutation still retain better vision when the cone structure is abnormal, the density is decreased, and the function of cone and rod cells is decreased. CEP290 M1 and M2 are newly discovered nonsense mutations and newly discovered deletion mutations, which expanded the causative gene spectrum of pure CORD.
ObjectiveTo observe and analyze the clinical phenotype and genetic characteristics of COL2A1 and COL11A1 de novo mutation (DNM) related Stickler syndrome type Ⅰ and Ⅱ patients. MethodsA family-based cohort study. From December 2023 to November 2024, 4 patients (all probands) with Stickler syndrome diagnosed by clinical and genetic testing in Department of Ophthalmology of People's Hospital of Ningxia Hui Autonomous Region and their parents (8 cases) were included in the study. The patients came from 4 unrelated families. A detailed medical history was taken, and the patients underwent best-corrected visual acuity (BCVA), refraction, and fundus color photography examinations. Systemic examinations included the oral and facial regions, skeletal, joints, and hearing. Peripheral venous blood samples were collected from the patients and their parents, and genomic DNA was extracted. Whole-exome sequencing was used to screen for pathogenic genes and their loci, which were then validated by Sanger sequencing and combined with segregation analysis in the families to identify candidate gene mutation sites. The candidate variants were assessed for pathogenicity according to the American College of Medical Genetics and Genomics (ACMG) criteria and guidelines for the classification of genetic variants. Additionally, cross-species conservation analysis was performed to determine the evolutionary conservation of wild-type amino acids, and protein three-dimensional modeling techniques were used to characterize the spatial conformational changes of the variant proteins and the alterations in their local hydrogen bond networks. ResultsAmong the 4 patients, there were 2 males and 2 females; their ages ranged from 3 to 12 years. There were 2 cases of Stickler syndrome type Ⅰ (proband of families 1 and 2) and 2 cases of type Ⅱ (proband of families 3 and 4). The diopters ranged from −8.00 to−18.00 D. BCVA ranged from no light perception to 0.6-. There were 2 cases each of vitreous membrane-like and “bead-like” opacity. Three cases showed peripapillary atrophy arcs and leopard pattern changes in the retina; one case had bilateral retinal detachment with a large macular hole in the left eye, which had previously been treated with vitrectomy surgery. One case had bilateral sensorineural hearing loss. There were 3 cases of simple micrognathia; one case had a flat nasal bridge, short nose, midface depression, and micrognathia. Two cases had excessive elbow joint extension. The phenotypes of the parents of the 4 patients were normal. Genetic testing results revealed that the probands of families 1 and 2 carried COL2A1 gene c.85+1G>C (M1) splice site variant and c.3950_3951insA (p.M1317Ifs*48) (M2) frameshift variant, respectively; the probands of families 3 and 4 carried COL11A1 gene (NM_001854.4) c.2549 G>T (p.G850V) (M3) missense variant and c.3816+6T>C (M4) splice site variant, respectively. The parents did not carry the related gene variants. Among them, M2, M3, and M4 are newly reported DNM. According to the ACMG guidelines, they were all considered likely pathogenic. The cross-species conservation analysis results showed that the wild-type amino acid of the COL11A1 gene M3 missense variant was highly conserved across multiple different species. Protein local structure modeling analysis revealed that the COL2A1 gene M2 frameshift variant and the COL11A1 gene M3 missense variant significantly altered the tertiary structure conformation of the protein, leading to abnormal spatial arrangement and hydrogen bond network in the key functional domains ConclusionThe COL2A1 gene M1 splice site variant, M2 frameshift variant, and the COL11A1 gene M3 missense variant, M4 splice site variant are respectively the potential pathogenic genes for families 1, 2, and families 3, 4; leading to the onset of Stickler syndrome type Ⅰ in families 1 and 2, and type Ⅱ in families 3 and 4.
Objective To summarize the role of cellular senescence and senescent secretary phenotype in the intervertebral disc (IVD) degeneration. Methods Relevant articles that discussed the roles of cellular senescence in the IVD degeneration were extensively reviewed, and retrospective and comprehensive analysis was performed. The senescent phenomenon during IVD degeneration, senescent secretary phenotype of the disc cells, senescent pathways within the IVD microenvironment, as well as the anti-senescent approaches for IVD regeneration were systematically reviewed. Results During aging and degeneration, IVD cells gradually and/or prematurely undergo senescence by activating p53-p21-retinoblastoma (RB) or p16INK4A-RB senescent pathways. The accumulation of senescent cells not only decreases the self-renewal ability of IVD, but also deteriorates the disc microenvironment by producing more inflammatory cytokines and matrix degrading enzymes. More specific senescent biomarkers are required to fully understand the phenotype change of senescent disc cells during IVD degeneration. Molecular analysis of the senescent disc cells and their intracellular signaling pathways are needed to get a safer and more efficient anti-senescence strategy for IVD regeneration. Conclusion Cellular senescence is an important mechanism by which IVD cells decrease viability and degenerate biological behaviors, which provide a new thinking to understand the pathogenesis of IVD degeneration.
ObjectiveTo investigate the influences of lactic acid (LA), the final degradation product of polylactic acid (PLA) on the prol iferation and osteoblastic phenotype of osteoblast-l ike cells so as to provide theoretical basis for bone tissue engineering. MethodsRos17/2.8 osteoblast-l ike cells were harvested and divided into 3 groups. In groups A and B, the cells were cultured with the medium containing 4, 8, 16, 22, and 27 mmol/L L-LA and D, L-LA, respectively. In group C, the cells were cultured with normal medium (pH7.4). The cell prol iferation was determined with MTT method after 1, 3, and 5 days. The relative growth ratio (RGR) was calculated, and the cytotoxicity was evaluated according to national standard of China. In addition, the alkal ine phosphatase (ALP) activity of cells cultured with medium containing 4 mmol/L L-LA (group A), 4 mmol/ L D, L-LA (group B), and normal medium (group C) after 1 and 5 days were detected with ALP kits, and the relative ALP ratio (RAR) was calculated; after 21 days, the calcium nodules were tested with von Kossa staining method, and were quantitatively analyzed. ResultsWhen LA concentration was 4 mmol/L, the mean RGR of both groups A and B were all above 80%, and the cytotoxic grades were grade 0 or 1, which meant non-cytotoxicity. When LA concentration was 8 mmol/L and 16 mmol/ L, groups A and B showed cytotoxicity after 5 days and 3 days, respectively. When LA concentration was above 22 mmol/L, cell prol iferations of groups A and B were inhibited evidently after 1-day culture. At each LA concentration, RGR of group A was significantly higher than that of group B at the same culture time (P<0.05) except those at 4 mmol/L after 1-day and 3-day culture. After 1 day, the RAR of group A was significantly higher than that of group B on 1 day (144.1%±3.2% vs. 115.2%±9.8%, P<0.05) and on 5 days (129.6%±9.8% vs. 78.2%±6.9%, P<0.05). The results of von Kossa staining showed that the black gobbets in group A were obviously more than those of groups B and C. The staining area of group A (91.2%±8.2%) was significantly higher than that of groups B (50.3%±7.9%) and C (54.2%±8.6%) (P<0.05). ConclusionThe concentration and composition of LA have significant effects on the cell proliferation and osteoblastic phenotype of osteoblast-l ike cells.