Platelets are rapidly activated by activators and produce a large number of platelet microparticles (PMPs) with high coagulation activity, resulting in coagulation dysfunction. However, the generation mechanism of PMPs is still not clear. Hopping probe ion conductance microscopy (HPICM) has special technical advantages in non-contact, real-time, high-resolution imaging of living cells under physiological conditions. Using HPICM, this study monitored the processes of platelet activation and generation of PMPs in real time in the presence of calcium ionophore A23187 and cytochalasin D (CD), respectively. The results proved that the intracellular calcium concentration and the cytoskeletal proteins played important roles in the platelet activation and the generation of PMPs. Compared with the low density spread shape platelets (LDSS), the high density bubble shape platelets (HDBS) were more sensitive to the calcium ionophore A23187 and cytochalasin D. This research has a guiding significance for the further study on the relationship between platelet activation and coagulation function using HPICM.
Atherosclerotic cardiovascular disease (ASCVD) is a disease caused by the accumulation of atherosclerotic plaques that leads to arterial hardening and impairment of contractility. Proprotein convertase subtilisin/kexin type 9 (PCSK9) can increase low-density lipoprotein cholesterol levels in plasma, which accelerates the development and progression of ASCVD. This article intends to review the biological characteristics and functional mechanisms of PCSK9, elucidate its impact on the development and progression of ASCVD, provide research literature support for the diagnosis and treatment of such diseases and improving the prognosis of patients.