Magnetoelastic (ME) sensors, characterized by wireless, passive, low cost and high sensitivity, have widespread applications in various fields. However, its defects of large volume, high power consumption, poor portability and inconveniency for use limit the application prospects of the ME sensors. To solve this problem, the present paper shows a portable, low-power, resonance-type ME sensor detecting system based on STM32. The experimental results indicated that this detecting system allowed the ME sensor to complete the measurement of resonant frequency in different medium and different concentration, with a frequency resolution of less than 1 Hz, and the resonant frequency ratio of ME sensors in different sizes 0.933 8, closing the theoretical value of 0.942 3. Moreover, compared with the traditional impedance analyzer combined detecting system and the existing integrated detecting system, the present system has a power consumption of 0.68 W in operation and of only 2.20 mW in the dormancy mode. Therefore, the system can not only replace the original impedance analyzer combined detecting system, but also significantly improve the power control of the existing integrated detecting system, exhibiting the advantages of higher integration, portable measurement, and fine suitability for long-term monitoring.
ObjectiveWearable devices refer to a class of monitoring devices that can be tightly integrated with the human body and are designed to continuously monitor individual's activity without impeding or restricting the user's normal activities in the process. With the rapid advancement of chips, sensors, and artificial intelligence technologies, such devices have been widely used for patients with cardiovascular diseases who require continuous health monitoring. These patients require continuous monitoring of a number of physiological indicators to assess disease progression, treatment efficacy, and recovery in the early stages of the disease, during the treatment, and in the recovery period. Traditional monitoring methods require patients to go to the doctor on a regular basis with the help of fixed devices and analysis by doctors, which not only increases the financial burden of patients, but also consumes medical resources and time. However, wearable devices can collect data in real time and transmit it directly to doctors via the network, thus providing an efficient and cost-effective monitoring solution for patients. In this paper, we will review the applications, advantages and challenges of wearable devices in the treatment of cardiovascular diseases, as well as the outlook for their future applications.