Objective To summarize and analyze the preliminary clinical outcomes of the KokaclipTM transcatheter edge-to-edge mitral valve repair system for severe degenerative mitral regurgitation (DMR). Methods This study was a single-arm, prospective, single-group target value clinical trial that enrolled patients who underwent the KokaclipTM transcatheter edge-to-edge repair (TEER) system for DMR in the Department of Heart Surgery of Guangdong Provincial People's Hospital, Guangdong Cardiovascular Institute from June 2022 to January 2023. Differences in the grade of mitral regurgitation (MR) during the perioperative and follow-up periods were compared, and the incidences of adverse events such as all-cause death, thoracotomy conversion, reoperation, and severe recurrence of MR during the study period were investigated. Results The enrolled patient population consisted of 14 (50.0%) females with a mean age of 70.9±5.4 years. Twenty-eight (100.0%) patients were preoperatively diagnosed with typeⅡ DMR, with a prolapse width of 12.5 (11.0, 16.1) mm, a degree of regurgitation 4+ leading to pulmonary venous reflux, and a New York Heart Association cardiac function class≥Ⅲ. All patients completed the TEER procedure successfully, with immediate postoperative improvement of MR to 0, 1+, and 2+ grade in 2 (7.1%), 21 (75.0%), and 5 (17.9%) patients, respectively. Mitral valve gradient was 2.5 (2.0, 3.0) mm Hg. Deaths, thoracotomy conversion, or device complications such as unileaflet clamping, clip dislodgement, or leaflet injury were negative. Twenty-eight (100.0%) patients completed at least 3-month postoperative follow-up with a median follow-up time of 5.9 (3.6, 6.8) months, during which patients had a mean MR grade of 1.0+ (1.0+, 2.0+) grade and a significant improvement from preoperative values (P<0.001). There was no recurrence of ≥3+ regurgitation, pulmonary venous reflux, reoperation, new-onset mitral stenosis, or major adverse cardiovascular events. Twenty-two (78.6%) patients’ cardiac function improved to classⅠorⅡ. Conclusion The domestic KokaclipTM TEER system has shown excellent preliminary clinical results in selected DMR patients with a high safety profile and significant improvement in MR. Additional large sample volume, prospective, multicenter studies, and long-term follow-up are expected to validate the effectiveness of this system in the future.
Objective To compare the environmental microbiological and physical monitoring parameters between the temporary extended medical area and the normal area during the flexible allocation of ward, summarize the rule and find the potential risk points of infection control. Methods From April 10th to 23rd, 2023, prospective environmental microbial monitoring and physical parameter monitoring were carried out in a ward of Zhongnan Hospital of Wuhan University, and the monitoring results under different scenarios were compared and analyzed. Results In general, the carbon dioxide (CO2) concentration, particulate matter 2.5 (PM2.5) concentration, temperature, and relative humidity in the temporary medical area were better than those in the inpatient rooms (P<0.05), but there was no statistically significant difference in the amount of microorganisms detected on the surface of environmental objects or the hands of medical staff (P>0.05). After the start of the temporary medical area, the amount of microorganisms detected on the surface of environmental objects, CO2 concentration, and temperature in the inpatient rooms were higher than those in the temporary medical area (P<0.05), the PM2.5 concentration in the inpatient rooms was lower than that in the temporary medical area (P<0.05), and there was no statistically significant difference in the amount of microorganisms detected on the hands of medical staff or relative humidity between the two areas (P>0.05). Compared with those in the same area when the temporary medical area was not started, in the inpatient rooms after the start, the amount of microorganisms detected in the air, CO2 concentration, temperature, and relative humidity were lower (P<0.05), the amount of microorganisms detected on the surface of environmental objects and PM2.5 concentration were higher (P<0.05), and there was no statistically significant difference in the amount of microorganisms detected on the hands of medical staff between the two periods (P>0.05); in the temporary medical area after the start, the PM2.5 concentration was higher (P<0.05), the CO2 concentration and temperature were lower (P<0.05), and the differences in the relative humidity and amounts of microorganisms detected on the surface of environmental objects and the hands of medical staff between the two periods were not statistically significant (P>0.05). Regardless of whether the temporary medical area was activated or not, Filamentous fungi had the highest detection rates in air samples, and Staphylococcus epidermidis had the highest detection rates in both environmental surface samples and medical staff hand samples. Conclusion A series of environmental risks such as environmental microbial load and poor ventilation caused by temporary medical areas should be paid attention to.