Objective To review the recent advances in transforming growth factor-β(TGF-β) super family study and its role in new bone formation. Methods The latest original articles related to this subject were retrieved extensively,especially the effect of TGF-β, bone morphogenetic proteins(BMPs) and activin(ACT) on distractionosteogenesis. Results TGF-β, BMPs and ACT play important roles in prompting new bone formation and each of them has different effects. Among them, TGF-β can stimulate the proliferation of osteoblast and synthesis ofextra cellular medium; BMPs can initiate the differentiation of interstitial cell toosteocyte; then ACT displays the combine effect of above two factors. Conclusion TGF-β superfamily can regulate new bone formation and thus shorten the course of mandibular distraction osteogenesis.
ObjectiveTo study the hydrophilicity and the cell biocompatibility of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) coated with a fusion protein polyhydroxyalkanoates granule binding protein (PhaP) fused with Arg-Gly-Asp (RGD) peptide (PhaP-RGD). MethodsPHBV and PHBHHx films were fabricated by solvent evaporation.Scanning electronic microscope (SEM) was used to study the morphology of the films.PhaP-RGD fusion proteins were expressed and purified by the technology of protein engineering; PHBV and PHBHHx films were immersed in the PhaP-RGD with an amount of 3.5 mg/mL protein/per sample respectively.The hydrophilicity of the surface were detected by the contact angle measurements.Septal cartilage cells obtained from human septal cartilage were cultured in vitro.The 2nd passage chondrocytes were incubated on PHBV unmodified with PhaP-RGD in group A1,PHBV modified with PhaP-RGD in group A2,PHBHHx unmodified with PhaP-RGD in group B1,PHBHHx modified with PhaP-RGD in group B2,and on the cell culture plates in group C.After cultured for 3 days,the proliferation of cells was detected by the DAPI staining; the proliferation viability of cells was detected by the MTT assay after cultured for 3 and 7 days; after cultured for 7 days,the adhesion and morphology of the cells on the surface of the biomaterial films were observed by SEM and the matrix of the cells was detected through the toluidine blue staining. ResultsSEM observation showed that PHBV and PHBHHx films had porous structures.The contact angle of the surface of the PHBV and PHBHHx films modified with PhaP-RGD fusion proteins were significantly reduced when compared with the films unmodified with PhaP-RGD fusion proteins (P<0.05).Chondrocytes of human nasal septal cartilage incubated on the films could grow in all groups.After 3 days of cultivation in vitro,the cell proliferation and viability of group B2 were the strongest among all groups (P<0.05); the cell proliferation after cultured for 7 days was significantly stronger than that after cultured for 3 days in groups A1,A2,B1,and B2 (P<0.05); and the cell proliferation was significantly stronger in groups B1 and B2 than groups A1,A2 and C,in group B2 than group B1,and in group A1 than group A2 (P<0.05).The results of toluidine blue staining showed that blue metachromasia matrixes were observed in groups A1,A2,B1,and B2; group A1 and group A2 had similar staining degree,and the staining of group B2 was deeper than that of group B1.The adhesion of cells in all groups was good through SEM observation; and the connection of cells formed and stretched into the pores of the materials. ConclusionThe biomaterial films of PHBHHx modified with PhaP-RGD fusion protein can promote its biocompatibility with chondrocytes.
Objective To investigate the influence of enamel matrix proteins (EMPs) on the attachment, prol iferation and pre-mRNA of type I collagen synthesis of cultured human dermal fibroblast cells. Methods Human dermal fibroblast cells were obtained from human acrobystia and cultured in DMEM medium with 10% FBS. The 3rd to 6th passage cells were used. Ninety-six-well plates and 6-well plates were pre-coated with different concentrations of EMPs (50, 100, 150 and200 μg/ mL). ① The cell attachment experiment: 0.2 mL cells suspension at the concentration of 1 × 106/mL was added to the pre-coated 96-well plates as the experimental groups (groups A, B, C and D based on different concentrations of EMPs). At 1.5, 3.0, and 4.5 hours after inoculation, the attached cells were measured by MTT method. ② The cell prol iferation experiment: 0.2 mL cells suspension at the concentration of 5 × 104/mL was added to the pre-coated 96-well plates as the experimental groups (groups A1, B1, C1 and D1 based on the different concentrations of EMPs). At 2, 4, 6 and 8 days after inoculation, the cells were measured by MTT method. ③ The synthesis experiment of pre-mRNA: 2 mL cells at the concentration of 1 × 106/mL was added to the pre-coated 6-well plates as the experimental groups (groups A2, B2, C2 and D2 based on different concentrations of EMPs). At 5 days after inoculation, the synthesis of pre-mRNA was measured by RT-PCR method. Human dermal fibroblast cells were added to the un-coated plates as the control groups. Results ① The cell attachment experiment: There were significant differences in attachment cells between the control group, group A and the groups B, C and D (P lt; 0.05). There were no significant difference between group A and control group (P lt; 0.05). ② The cell prol iferation experiment: At 2 days, there were no significant differences in absorbance between the control group and the experimental groups (P gt; 0.05); at 4 days and 6 days, the absorbance of groups B1 (0.598 ± 0.020 and 0.639 ± 0.016 ), C1 (0.582 ± 0.017 and 0.641 ± 0.020) and D1 (0.574 ± 0.021and 0.635 ± 0.021) was significantly higher than that of the control group (0.548 ± 0.021 and 0.605 ± 0.019, P lt; 0.05); at 8 days, the absorbance of group B1 (0.629 ± 0.012) and group C1 (0.631 ± 0.014) was significantly higher than that of the control group (0.606 ± 0.031, P lt; 0.05). ③ The synthesis experiment of pre-mRNA: The synthesis of type I collage pre-mRNA of groups B2, C2 and D2 was significantly higher than that of the control group. Conclusion EMPs stimulate human dermal fibroblast cell attachment, prol iferation and synthesis of type I collage pre-mRNA, and its maximal effect can be achieved at the concentration of 100 μg /mL.
ObjectiveTo observe the effect of TGF-β receptor inhibitor Compound C on the directed differentiation of human embryonic stem cells (hESC) into retinal pigment epithelial (RPE) cells. MethodsH1 hESC were divided into control group and experimental group. When the hESC reached over confluence, the medium was changed to knockout serum replacement medium without bFGF to induce RPE differentiation. The experimental group was supplemented with 1 μmol/L TGF-β receptor inhibitor Compound C at the first six days of induction. Real-time PCR was carried out to examine the expression of paired-box gene 6 (PAX6), microphthalmia-associated transcription factor (MITF), cellular retinaldehyde blinding protein (CRALBP), and RPE65 in both groups at the 1, 3, 5 weeks of the induction process. hESC-derived RPE (hESC-RPE) cells were isolated mechanically and purified. Real-time PCR, Western blot and immunofluorescence were used to characterize the purified hESC-RPE cells. ResultsPigmented colonies were observed in experimental group at the 4 weeks of the induction process, while no pigmented colony could be detected in the control group. All the purified pigmented cells from experimental group showed polygons morphology. Experimental group showed significantly higher expression of RPE marker genes PAX6, MITF, CRALBP and RPE65 than the control group(P<0.05). Compared with the hESC and ARPE-19 cells line, purified hESC-RPE cells showed much higher expression of PAX6, MITF, CRALBP and RPE65(P<0.05).High expression level of PAX6 and RPE65 proteins were observed in hESC-RPE cells. Immunofluorescence verified the expression of PAX6 and ZO-1 in hESC-RPE cells. ConclusionTGF-β receptor inhibitor Compound C significantly improved the differentiation efficiency of hESC into RPE.
Objective To clarify the relationship between inhibition of proliferation and cxpression of Ki-67 in cultured human retinal pigment epithelial(RPE) cells. Methods The cultured human RPE cells were treated with daunoblastina at a dose of 180 mu;g/L for 12h.Twenty-four hours later,DNA inhibiting rate was studied by using tritium-labelled thymidine deoxyribose(3H-TdR)incorporation assay.The expression of Ki-67 was evaluated by immunocytochemical staining technique and image analysis system.Flow cytometry was used to analyse cell cycle. Results DNA inhibiting rate was directly proportional to the dosage of daunoblastina.The proportion of the cells positive staining to Ki-67 in the control and the daunoblastina-treated group were 89.3% and 45.6%(Plt;0. 01),and the integral optical density values for expression of Ki-67 in the two groups were 68.1plusmn;6.2 and 27.3plusmn;5.5(Plt;0.01),respectively.The percen tage of cells in G2 phase of cell cycle increased from 8.9% to 29.5%. Conclusion G2 block was induced and poliferation was inhibited by daunoblastina in cultured human RPE cells.There is a relatively good correlation between Ki-67 immunostaining and inhibition of RPE cell proliferation. (Chin J Ocul Fundus Dis,2000,16:1-70)
Objective To observe the effect of shRNA interference lentivirus vector targeting rat Sirt1 gene on the expression of Sirt1 in retinal ganglion cell (RGC). Methods Four short hairpin (sh) RNA interference sequences targeting rat Sirt1 gene were designed. The target sequences of Oligo DNA were synthesized and annealed to double strand DNA, which was subsequently connected with pGLV3 lentivirus vector to build the lentiviral vector. The positive clones were identified by polymerase chain reaction (PCR) and DNA sequencing. The lentiviral vector construct and lentiviral packaging plasmids were co-transfected into 293T cells, then the titer of lentivirus were determined. The RGC were divided into 6 groups including blank group, negative control group and si-Sirt1-1, si-Sirt1-2, si-Sirt1-3, si-Sirt1-4 groups. Real-time PCR and Western blotting were used to detect the expression of Sirt1 mRNA and protein in the RGC cells. Results PCR and DNA sequencing analysis confirmed that the shRNA sequence was successfully inserted into the lentivirus vector. The concentrated titer of virus suspension was 8×108 TU/ml after the recombinant lentiviral vector successfully transfected and harvested in 293T cells. Comparing with NC group, the expression of Sirt1 mRNA and protein were significantly decreased in the si-Sirt1-1, si-Sirt1-2, si-Sirt1-3 and si-Sirt1-4 groups (F=27.682, 1 185.206; P=0.000, 0.000). The si-Sirt1-2 group had the strongest effect in reducing the expression of Sirt1 mRNA and protein. Conclusion The 4 lentiviral vectors harboring RNAi targeting rat Sirt1 gene can effectively down regulate the expression of Sirt1 mRNA and protein in RGC cells.
ObjectiveTo observe the expression of heat shock protein 47 (HSP47) and transforming growth factor-β2(TGF-β2) in vitreous specimens and epiretinal membranes of patients with proliferative vitreoretinopathy diseases. MethodsVitreous specimens and epiretinal membranes were obtained from 48 patients (48 eyes) with proliferative vitreoretinopathy (PVR) and 50 patients (50 eyes) with proliferative diabetic retinopathy (PDR). Vitreous specimens and internal limiting membranes were collected from 20 patients (20 eyes) with idiopathic macular hole (IMH) as control group. The expression of HSP47 and TGF-β2 in the vitreous specimens was evaluated using enzyme linked immunosorbent assay. The expression of HSP47, TGF-β2, typesⅠandⅢcollagen in epiretinal membrane and internal limiting membrane specimens were observed for immunohistochemical staining method. The correlation between the positive expression of HSP47 and TGF-β2, typesⅠandⅢcollagen in epiretinal membrane specimens of patients with PVR and PDR were analyzed. ResultsThe expression of HSP47 in vitreous specimens of patients with PVR, PDR and IMH were (212.35±23.32), (231.30±26.79), (171.06±28.91) pg/ml, respectively. The expression of TGF-β2 in vitreous specimens of patients with PVR, PDR and IMH were (1919.96±318.55), (1939.39±177.57), (1194.61±234.20) pg/ml, respectively. The expression of HSP47, TGF-β2 in the vitreous specimens of patients with PVR and PDR were significantly increased compared with patients with IMH and the difference was statistically significant (F=12.952, 34.532;P < 0.01). The epiretinal membrane of patients with PVR and PDR showed markedly increased expression of HSP47, TGF-β2, typesⅠandⅢcollagen in the cytoplasm and extracellular matrix. The expression of HSP47 and typeⅢcollagen was negative and the expression of TGF-β2 was weakly positive and the expression of typesⅠcollagen was positive in internal limiting membrane of patients with IMH. The expression of HSP47, TGF-β2, typesⅠandⅢcollagen in the epiretinal membrane of patients with PVR and PDR were significantly increased compared with patients with IMH and the difference was statistically significant (F=13.469, 18.752, 12.875, 20.358; P < 0.01). The expression of HSP47 was positively correlated with the positive expression of TGF-β2, typesⅠandⅢcollagen in epiretinal membrane specimens of patients with PVR (r=0.475, 0.556, 0.468; P < 0.05) and PDR (r=0.484, 0.589, 0.512; P < 0.05). ConclusionsThis study showed increased consistent expression of HSP47 and TGF-β2 in vitreous and epiretinal membrane specimens of patients with PVR and PDR. Both HSP47 and TGF-β2 were expressed in the cytoplasm and extracellular matrix. HSP47 and TGF-β2 may be involved in the pathological process of PDR and PVR by promoting collagen synthesis.
ObjectiveTo investigate the expression of miR-195 and the underlying molecular mechanisms of miR-195 regulating HMGB1 in diabetic retinopathy (DR). MethodsExtract 5 ml venous blood from DR patients, diabetes mellitus (DM) patients and normal subjects, then extract and perificate plasma total RNA. MicroRNA array and real time polymerase chain reaction (RT-PCR) was used to screen out miRNAs which were expressed with significant differences in the serum of patients with DR. Bioinformatics was employed to predict the miR-195 related to high mobility group box 1 (HMGB1) regulation. Next, miR-195 was down-regulated or up-regulated in umbilical vein endothelial cells through transfection of miR-195 inhibitor and miR-29b mimics respectively.Then we analyzed expression of HMGB1 mRNA and protein by RT-PCR and Western blot. ResultsMicroRNA array results showed the expression of miR-195 in DR group is decreased by 8.34 times and 11.47 times compared with DM group and the normal group. RT-PCR verification results conforms to the microRNA array results. Compared with the DM group (F=0.034, t=8.057) and the normal group (F=0.370, t=9.522), the expression of miR-195 in DR group were significantly reduced, the differences were statistically significant (P < 0.05). RT-PCR showed that the expression of HMGB1 mRNA was significantly decreased in up-regulation group, compared with blank (F=0.023, t=11.287) and negative control group (F=0.365, t=7.471), the difference was statistically significant (P < 0.05). The expression of HMGB1 mRNA was significantly increased in down-regulation group, compared with blank (F=0.053, t=10.871) and negative control group (F=0.492, t=6.883), the difference was statistically significant (P < 0.05). Western blot showed that the expression of HMGB1 protein was significantly decreased in up-regulation group, compared with blank (F=0.021, t=8.820) and negative control group (F=0.039, t=7.401), the difference was statistically significant (P < 0.05); and significantly increased in down-regulation group, compared with blank (F=0.186, t=10.092) and negative control group (F=0.017, t=12.923), the difference was statistically significant (P < 0.05). ConclusionMiR-195 can inhibit the expression of HMGB1, reduce the inflammation and angiogenesis, thereby delaying or inhibiting the occurrence and development of DR.
Objective To investigate the effects of bursopentin ( BP5) on expression of extracellular matrix in human lung fibroblasts ( HLFs) and its mechanism.Methods HLFs were cultured in vitro and divided into five groups. The cells in the control group were cultured in DMEMwithout TGF-β1 or BP5. The cells in TGB-β1 treatment group were cultured in DMEMcontaining 5 μg/L TGF-β1 . While in three TGF-β1 + BP5 treatment groups, the cells were cultured in DMEM containing 5 μg/L TGF-β1 and simultaneously intervened with BP5 at three different concentrations ( 2. 5 μg/mL, 5 μg/mL, and 10 μg/mL respectively) . The expression of α-SMA was detected using a fluorescent-labeling strategy. The expressions of Collagen-Ⅰ, p-Smad2/3, p-Smad3, and Smad7 proteins were measured by Western blot. Results The cells in the TGF-β1 treatment group showed positive expression of α-SMA, implying TGF-β1 had induced fibroblasts to differentiate into myofibroblasts. In the TGF-β1 treatment group, the expressions of collagen-Ⅰ( 1. 402 ±0. 158 vs. 0. 605 ±0. 367) , p-Smad2/3 ( 1. 457 ±0. 111 vs. 0. 815 ±0. 039) , and p-Smad3 ( 1. 320 ±0. 147 vs. 0. 623 ±0. 128) increased with statistical significance ( P lt; 0. 01) . Meanwhile the expression of Smad7 reduced ( 0. 614 ±0. 107 vs. 0. 865 ±0. 063, P lt;0. 05) . But in the TGF-β1 + BP5 treatment groups, over-expressions of collagen-Ⅰ, α-SMA, p-Smad2 and p-Smad3 induced by TGF-β1 were obviously inhibited by BP5, especially at the BP5 concentration of 10 μg/mL ( collagen-Ⅰ: 0. 718 ±0. 049 vs. 1. 402 ±0. 158; p-Smad2 /3: 0. 696 ±0. 031 vs. 1. 457 ±0. 111; p-Smad3: 0. 766 ±0. 006 vs. 1. 320 ±0. 147; all P lt; 0. 01) . Otherwise, the up-regulation of Smad7 ( 1. 237 ±0. 173 vs. 0. 614 ±0. 107) was found.Conclusions Bursopentin can reduce the expressions of collagen-Ⅰ and α-SMA protein of fibroblast stimulated by TGF-β1 , maybe through inhibiting TGF-β1 /Smads transduction pathway. It is suggested that bursopentin may have intervention effect on pulmonary fibrosis.
Objective To prepare a new glycoproteinopticin specific antibody and to explore the distribution of opticin in human eye. Methods Firstly, take the opticin specific antibody to compound a synthetic peptide chain(CLPRLPIGRFT), and then get the opticin antibody. To verify the availability of antibody through the western blot for human vitreous extract, to test the distribution of opticin in human eye by immunohistochemistry. Results Through the western blot for human vitreous extract, we can see a band with wild range at molecular weight 45times;103~50 times;103. We find that opticin exact in retina, vitreous and non-pigmented epithelium of ciliary body which distributes along the collagen fibrils in vitreous. Conclusion The availability of the antibody was confirmed by western blot. Opticin are mainly in retina, vitreous and nonpigmented epithelium of ciliary body. Opticin distributes along the collagen fibrils which may be related to the stability of vitreous. (Chin J Ocul Fundus Dis,2008,24:286-288)