Objective To evaluate the safety and efficacy of basic anesthesia combined with local anesthesia in the preoperative localization of multiple pulmonary nodules. Methods The clinical data of patients who underwent preoperative localization for multiple pulmonary nodules resection under single-port thoracoscopy in Nanjing Brain Hospital from July 2023 to September 2023 were extracted. They were divided into a group A and a group B according to the localization method. The patients in the group A were localized under local anesthesia, and the patients in the group B were localized with basic anesthesia combined with local anesthesia. The basic clinical characteristics, localization success rate, incidence of localization complications, localization time, and pain score of the two groups were compared and analyzed. Results Finally, we included 200 patients with 100 patients in each group. There were 49 males and 51 females at age of 25-77 (50.94±14.29) years in the group A. There are 45 males and 55 females at age of 24-78 (48.25±14.04) years in the group B. The incidence of localization complications (4% vs. 13%, P=0.04), localization time [(19.90±8.66) min vs. (15.23±5.98) min, P<0.01], and pain score[ (2.01±2.09) vs. (3.29±2.54), P<0.01] in the group B were significantly lower than those in the group A, and the differences were statistically significant. The localization success rate of the group B was significantly higher than that of the group A (98% vs. 92%, P=0.04), and the difference was statistically significant.Conclusion Mobile CT combined with basic anesthesia for preoperative localization of multiple pulmonary nodules is highly safe, has a high success rate, and provides high patient comfort, making it a valuable approach for clinical promotion.
In order to optimize the postoperative rehabilitation path of patients undergoing fourth-level day surgery, West China Hospital of Sichuan University has learned from the abroad “recovery hotel” mode and innovatively regarded the primary rehabilitation institution as an extended service carrier for thoracoscopic lung nodule day surgery. This extended rehabilitation mode based on primary rehabilitation institutions is not only beneficial for shortening the hospitalization period and reducing medical costs, but also ensures medical safety through a standardized postoperative monitoring system, providing innovative solutions for the full process management of day surgeries. This article will introduce the specific implementation methods and preliminary practical results of the extended rehabilitation mode mentioned above.
ObjectiveTo study the feasibility and safety of CT-guided preoperative Hookwire localization of pulmonary nodules in clinical application.MethodsClinical data of 102 patients who were scheduled to undergo surgical treatment for pulmonary nodules from June 2015 to April 2020 in the North Ward of Thoracic Surgery Department of Ruijin Hospital were retrospectively analyzed. There were 38 males and 64 females, aged 23-82 (53.2±12.8) years.ResultsAll 102 patients with pulmonary nodules underwent CT-guided preoperative Hookwire localization successfully, with a localization success rate of 100.0%. The localization time was 27.0 (11-67) min; the number of times to adjust the angle during the positioning process was 6.9 (3-14); the needle depth of the positioning needle was 41.5 (16.3-69.1) mm. A total of 48 (47.1%) patients had a small amount of bleeding in the lung tissue in the positioning area after positioning; 53 (51.9%) patients had a small amount of pneumothorax after positioning; 16 (15.7%) patients were found that the positioning needle completely shedded from the lung tissue in the subsequent surgery. One patient was transferred to open thoracotomy because of extensive dense adhesion in the thorax, and the remaining 101 patients were operated on under thoracoscopy. Postoperative pathology showed that 5 (4.9%) patients were adenocarcinoma in situ, 28 (27.5%) were microinvasive adenocarcinoma, 36 (35.3%) patients were invasive carcinoma and 32 (31.3%) patients were benign lesions. No patients had complications or adverse events related to preoperative positioning.ConclusionPreoperative CT-guided localization of Hookwire intrapulmonary nodules is safe and effective, and can meet the intraoperative localization needs of thoracic surgeons in most clinical situations, and is not inferior to other preoperative localization methods currently used in clinics.
ObjectiveTo explore the application value of CT-guided microcoil localization in pulmonary nodule (diameter≤15 mm) surgery.MethodsThe clinical data of 175 patients with pulmonary nodules who underwent single utility port video-assisted thoracoscopic surgery at Nanjing Drum Tower Hospital from August 2018 to December 2019 were retrospectively analyzed. According to whether CT-guided coil localization was performed before operation, they were divided into a locating group and a non-locating group. There were 84 patients (34 males, 50 females, aged 57.8±8.8 years) in the locating group and 91 patients (46 males, 45 females, aged 57.6±10.8 years) in the non-locating group. The localization success rate, localization time, incidence of complications, surgical and postoperative conditions were analyzed between the two groups.ResultsAll 84 patients in the locating group were successfully located, and localization time was 19.0±3.6 minutes. Among them, 19 (22.6%) patients had a small pneumothorax, 4 (4.8%) pulmonary hemorrhage and 2 (2.4%) coil shift; 6 (7.1%) patients had mild pain, 3 (3.6%) moderate pain and 1 (1.2%) severe pain. Sex (P=0.181), age (P=0.673), nodule location (P=0.167), nature of lesion (P=0.244), rate of conversion to thoracotomy (P=0.414), rate of disposable resection of nodules (P=0.251) and postoperative hospital stay (P=0.207) were similar between the two groups. There were significant differences in nodule size (P<0.001), nature of nodule (P<0.001), the shortest distance from nodule to pleura (P<0.001), operation time (P<0.001), lung volume by wedge resection (P=0.031), number of staplers (P<0.001) and total hospitalization costs (P<0.001) between the two groups.ConclusionCT-guided microcoil localization has the characteristics of high success rate, and is simple, practicable, effective, safe and minimally invasive. Preoperative CT-guided microcoil localization has important clinical application value for small pulmonary nodules, especially those with small size, deep location and less solid components. It can effectively shorten the operation time, reduce surgical trauma and lower hospitalization costs, which is a preoperative localization technique worthy of popularization.
Increasing peripheral pulmonary nodules are detected given the growing adoption of chest CT screening for lung cancer. The invention of electromagnetic navigation bronchoscope provides a new diagnosis and treatment method for pulmonary nodules, which has been demonstrated to be feasible and safe, and the technique of microwave ablation through bronchus is gradually maturing. The one-stop diagnosis and treatment of pulmonary nodules can be completed by the combination of electromagnetic navigation bronchoscopy and microwave ablation, which will help achieve local treatment through the natural cavity without trace.
Artificial intelligence (AI) has been widely used in all walks of life, including healthcare, and has shown great application value in the auxiliary diagnosis of pulmonary nodules in the medical field. In the face of a large amount of lung imaging data, clinicians use AI tools to identify lesions more quickly and accurately, improving work efficiency, but there are still many problems in this field, such as the high false positive rate of recognition, and the difficulty in identifying special types of nodules. Researchers and clinicians are actively developing and using AI tools to promote their continuous evolution and make them better serve human health. This article reviews the clinical application and research progress of AI-assisted diagnosis of pulmonary nodules.
ObjectiveTo establish and internally validate a predictive model for poorly differentiated adenocarcinoma based on CT imaging and tumor marker results. MethodsPatients with solid and partially solid lung nodules who underwent lung nodule surgery at the Department of Thoracic Surgery, the Affiliated Brain Hospital of Nanjing Medical University in 2023 were selected and randomly divided into a training set and a validation set at a ratio of 7:3. Patients' CT features, including average density value, maximum diameter, pleural indentation sign, and bronchial inflation sign, as well as patient tumor marker results, were collected. Based on postoperative pathological results, patients were divided into a poorly differentiated adenocarcinoma group and a non-poorly differentiated adenocarcinoma group. Univariate analysis and logistic regression analysis were performed on the training set to establish the predictive model. The receiver operating characteristic (ROC) curve was used to evaluate the model's discriminability, the calibration curve to assess the model's consistency, and the decision curve to evaluate the clinical value of the model, which was then validated in the validation set. ResultsA total of 299 patients were included, with 103 males and 196 females, with a median age of 57.00 (51.00, 67.25) years. There were 211 patients in the training set and 88 patients in the validation set. Multivariate analysis showed that carcinoembryonic antigen (CEA) value [OR=1.476, 95%CI (1.184, 1.983), P=0.002], cytokeratin 19 fragment antigen (CYFRA21-1) value [OR=1.388, 95%CI (1.084, 1.993), P=0.035], maximum tumor diameter [OR=6.233, 95%CI (1.069, 15.415), P=0.017], and average density [OR=1.083, 95%CI (1.020, 1.194), P=0.040] were independent risk factors for solid and partially solid lung nodules as poorly differentiated adenocarcinoma. Based on this, a predictive model was constructed with an area under the ROC curve of 0.896 [95%CI (0.810, 0.982)], a maximum Youden index corresponding cut-off value of 0.103, sensitivity of 0.750, and specificity of 0.936. Using the Bootstrap method for 1000 samplings, the calibration curve predicted probability was consistent with actual risk. Decision curve analysis indicated positive benefits across all prediction probabilities, demonstrating good clinical value. ConclusionFor patients with solid and partially solid lung nodules, preoperative use of CT to measure tumor average density value and maximum diameter, combined with tumor markers CEA and CYFRA21-1 values, can effectively predict whether it is poorly differentiated adenocarcinoma, allowing for early intervention.
Objective To investigate the risk factors, diagnosis and treatment of solitary pulmonary nodule (diameter≤3cm). Methods From Jan. 2001 to Dec. 2002, the clinical data of 297 patients with solitary pulmonary nodule were reviewed. Chi-square or t-test were used in univariate analysis of age, gender, symptom, smoking history, the size, location and radiological characteristics of nodule, and logistic regression in multivariate analysis. Results Univariate analysis revealed that malignancy was significantly associated with age (P=0. 000), smoking history (P=0. 001), the size (P=0. 000) and radiological characteristics (P=0. 000) of nodule. In multivariate analysis (logistic regression), it was significantly associated with age (OR = 1. 096), the size (OR = 2. 329) and radiological characteristics (OR=0. 167) of nodule. Conclusion Age and the size of nodule could be risk factors. Radiological findings could help distinguish from malignant nodules.
ObjectiveTo compare the effectiveness and safety of electromagnetic navigation-guided localization and CT-guided percutaneous localization for pulmonary nodules.MethodsThe literature published from the inception to January 2021 about the comparison between electromagnetic navigation-guided localization and CT-guided percutaneous localization for pulmonary nodules in the PubMed, The Cochrane Library, Web of Science, EMbase, Chinese Wanfang database and CNKI database was searched. RevMan (version 5.4) software was used for meta-analysis. Nonrandomized controlled trials were evaluated using methodological index for nonrandomized studies (MINORS).ResultsA total of six retrospective studies (567 patients) were included in this meta-analysis. MINORS scores of all studies were all 17 points and above. There were 317 patients in the CT-guided percutaneous localization group and 250 patients in the electromagnetic navigation-guided localization group. The complication rate of the CT-guided percutaneous localization group was significantly higher than that in the electromagnetic navigation-guided localization group (OR=11.08, 95%CI 3.35 to 36.65, P<0.001). There was no significant difference in the success rate of localization (OR=0.48, 95%CI 0.16 to 1.48, P=0.20), localization time (MD=0.30, 95%CI –6.16 to 6.77, P=0.93) or nodule diameter (MD=–0.07, 95%CI –0.19 to 0.06, P=0.29) between the two groups.ConclusionElectromagnetic navigation can be used as an effective preoperative positioning method for pulmonary nodules, which has the advantage of lower complication rate compared with the traditional CT positioning method.
Abstract: Objective To explore the approach of clinical diagnosis and treatment strategy for patients with small pulmonary nodules (SPN)≤ 1.0 cm in size on CT. Methods We retrospectively analyzed the clinical records of 39 patients with SPN less than 1.0 cm in size who underwent lung resection at Nanjing Drum Tower Hospital from January 2005 to June 2011. There were 23 males and 16 females. Their age ranged from 31-74 (51.0±7.4) years. Nine patients had cough and sputum and other patients had no symptom. All the patients were found to have SPN less than 1.0(0.8±0.1)cm in size but not associated with hilum and mediastinal lymphadenectasis in chest CT and X-ray. The results of their sputum cytology and electronic bronchoscope were all negative. All the patients had no histologic evidence and underwent pulmonary function test prior to operation. Eleven patients had positron emission tomography/computer tomography (PET/CT)or single-photon emission computed tomography (SPECT)which was all negative. Thirteen patients underwent video-assisted minithoracotomy(VAMT) and 26 patients underwent video-assisted thoracoscopic surgery (VATS). Results The average operation time was 121.0±48.0 min. Patients after partial lung resection were discharged 4~5 d postoperatively, and patients after lobectomy were discharged 7 d postoperatively. All the patients had no postoperative complications. Twenty one patients were identified as lung malignancy by postoperative pathology, including 9 patients with adenocarcinoma, 7 patients with bronchioloalveolar carcinoma, 1 patient with small cell lung carcinoma, and 4 patients with pulmonary metastasis. Eighteen patients had benign lesions including 4 patients with sclerosing hemangioma, 4 patients with inflammatory pseudotumor, 2 patients with pneumonia, 3 patients with granuloma, 2 patients with tuberculosis, and 3 patients with pulmonary lymph node hyperplasia. The SPN were located in left upper lobe in 11 patients, left lower lobe in 6 patients, right upper lobe in 14 patients, right middle lobe in 1 patient, and right lower lobe in 7 patients. Conclusion The diagnosis of SPN ≤1.0 cm in size on CT should consider malignance in the first step to avoid treatment delay. Patients may have a 3-month observation period to receive selective antibiotic treatment, chest CT and X-ray review after 2 to 4 weeks. CT- guided hook-wire fixation is useful to help in precise lesion localization for surgical resection. VATS and VAMT are common and effective methods for the diagnosis and treatment for SPN.