This study aims to predict expression of estrogen receptor (ER) in breast cancer by radiomics. Firstly, breast cancer images are segmented automatically by phase-based active contour (PBAC) method. Secondly, high-throughput features of ultrasound images are extracted and quantized. A total of 404 high-throughput features are divided into three categories, such as morphology, texture and wavelet. Then, the features are selected by R language and genetic algorithm combining minimum-redundancy-maximum-relevance (mRMR) criterion. Finally, support vector machine (SVM) and AdaBoost are used as classifiers, achieving the goal of predicting ER by breast ultrasound image. One hundred and four cases of breast cancer patients were conducted in the experiment and optimal indicator was obtained using AdaBoost. The prediction accuracy of molecular marker ER could achieve 75.96% and the highest area under the receiver operating characteristic curve (AUC) was 79.39%. According to the results of experiment, the feasibility of predicting expression of ER in breast cancer using radiomics was verified.
With the development of thin section axial computed tomography scan, the detection rate of pulmonary ground-glass nodules (GGN) continues increasing. GGN has a special natural growth history: pure ground-glass nodules (PGGN) smaller than 10 mm can hold steady for a long term, surgery resection is unnecessary, patients need regular follow up. Larger part solid ground-glass nodules (PSN) with a solid component can be malignant early stage lung cancer, which requires early surgery intervention. Establishment of a standard definition of GGN growth, investments in the long term natural growth history of GGN, validation of the clinical, radiology and genetic risk factors would be beneficial for the management of GGN patients.
This study aims to predict expression of Ki67 molecular marker in pancreatic cystic neoplasm using radiomics. We firstly manually segmented tumor area in multi-detector computed tomography (MDCT) images. Then 409 high-throughput features were automatically extracted and the least absolute shrinkage selection operator (LASSO) regression model was used for feature selection. After 200 bootstrapping repetitions of LASSO, 20 most frequently selected features made up the optimal feature set. Then 200 bootstrapping repetitions of support vector machine (SVM) classifier with 10-fold cross-validation were used to avoid overfitting and accurately predict the Ki67 expression. The highest prediction accuracy could achieve 85.29% and the highest area under the receiver operating characteristic curve (AUC) was 91.54% with a sensitivity (SENS) of 81.88% and a specificity (SPEC) of 86.75%. According to the results of experiment, the feasibility of predicting expression of Ki67 in pancreatic cystic neoplasm based on radiomics was verified.
ObjectiveTo summarize the application of radiomics in colorectal cancer.MethodsRelevant literatures about the therapeutic decision-making, therapeutic, and prognostic evaluation of colorectal cancer using radiomics were collected to make an review.ResultsRadiomics is of great value in preoperative stages, therapeutic, and prognostic evaluation in colorectal cancer.ConclusionRadiomics is an important part of precision medical imaging for colorectal cancer.
ObjectiveTo review the progress of radiomics in the field of colorectal cancer in recent years and summarize its value in the imaging diagnosis of colorectal cancer.MethodsEighty English and seven Chinese articles were retrieved through PUBMED, OVID, CNKI, Weipu and Wanfang. The structure and content of these literatures were classified and analyzed.ResultsIn five studies predicting the preoperative stages of colorectal cancer based on CT radiomics, the area under curve (AUC) ranged from 0.736 to 0.817; in two studies predicting the preoperative stages of colorectal cancer based on MRI radiomics, the AUC were 0.87 and 0.827 respectively. In two studies about radiomics analysis for evaluation of pathological complete response to neoadjuvant chemoradiotherapy based on CT, the AUC were 0.79 and 0.72 respectively; in four studies about radiomics analysis for evaluation of pathological complete response to neoadjuvant chemoradiotherapy based on MRI, the AUC ranged from 0.84 to 0.979. In one study evaluating the sensitivity of neoadjuvant chemotherapy based on MRI radiomics, the AUC was 0.79. In one study predicting the postoperative survival rate based on MRI radiomics, the AUC value of the final model was 0.827. In one study, the accuracy of the model based on PET/CT radiomics in 4-year disease-free survival (DSS), progression-free survival (DFS) and overall survival (OS) were 0.87, 0.79 and 0.79 respectively.ConclusionAt present, radiomics has a valuable impact on preoperative staging, neoadjuvant therapy evaluation, and survival analysis of colorectal cancer.
In order to solve the pathological grading of hepatocellular carcinomas (HCC) which depends on biopsy or surgical pathology invasively, a quantitative analysis method based on radiomics signature was proposed for pathological grading of HCC in non-contrast magnetic resonance imaging (MRI) images. The MRI images were integrated to predict clinical outcomes using 328 radiomics features, quantifying tumour image intensity, shape and text, which are extracted from lesion by manual segmentation. Least absolute shrinkage and selection operator (LASSO) were used to select the most-predictive radiomics features for the pathological grading. A radiomics signature, a clinical model, and a combined model were built. The association between the radiomics signature and HCC grading was explored. This quantitative analysis method was validated in 170 consecutive patients (training dataset: n = 125; validation dataset, n = 45), and cross-validation with receiver operating characteristic (ROC) analysis was performed and the area under the ROC curve (AUC) was employed as the prediction metric. Through the proposed method, AUC was 0.909 in training dataset and 0.800 in validation dataset, respectively. Overall, the prediction performances by radiomics features showed statistically significant correlations with pathological grading. The results showed that radiomics signature was developed to be a significant predictor for HCC pathological grading, which may serve as a noninvasive complementary tool for clinical doctors in determining the prognosis and therapeutic strategy for HCC.
The purpose of our study is to evaluate the diagnostic performance of radiomics in multi-class discrimination of lymphadenopathy based on elastography and B-mode dual-modal ultrasound images. We retrospectively analyzed a total of 251 lymph nodes (89 benign lymph nodes, 70 lymphoma and 92 metastatic lymph nodes) from 248 patients, which were examined by both elastography and B-mode sonography. Firstly, radiomic features were extracted from multimodal ultrasound images, including shape features, intensity statistics features and gray-level co-occurrence matrix texture features. Secondly, three feature selection methods based on information theory were used on the radiomic features to select different subsets of radiomic features, consisting of conditional infomax feature extraction, conditional mutual information maximization, and double input symmetric relevance. Thirdly, the support vector machine classifier was performed for diagnosis of lymphadenopathy on each radiomic subsets. Finally, we fused the results from different modalities and different radiomic feature subsets with Adaboost to improve the performance of lymph node classification. The results showed that the accuracy and overall F1 score with five-fold cross-validation were 76.09%±1.41% and 75.88%±4.32%, respectively. Moreover, when considering on benign lymph nodes, lymphoma or metastatic lymph nodes respectively, the area under the receiver operating characteristic curve of multi-class classification were 0.77, 0.93 and 0.84, respectively. This study indicates that radiomic features derived from multimodal ultrasound images are benefit for diagnosis of lymphadenopathy. It is expected to be useful in clinical differentiation of lymph node diseases.
ObjectiveTo explore the value of a decision tree (DT) model based on CT for predicting pathological complete response (pCR) after neoadjuvant chemotherapy therapy (NACT) in patients with locally advanced rectal cancer (LARC).MethodsThe clinical data and DICOM images of CT examination of 244 patients who underwent radical surgery after the NACT from October 2016 to March 2019 in the Database from Colorectal Cancer (DACCA) in the West China Hospital were retrospectively analyzed. The ITK-SNAP software was used to select the largest level of tumor and sketch the region of interest. By using a random allocation software, 200 patients were allocated into the training set and 44 patients were allocated into the test set. The MATLAB software was used to read the CT images in DICOM format and extract and select radiomics features. Then these reduced-dimensions features were used to construct the prediction model. Finally, the receiver operating characteristic (ROC) curve, area under the ROC curve (AUC), sensitivity, and specificity values were used to evaluate the prediction model.ResultsAccording to the postoperative pathological tumor regression grade (TRG) classification, there were 28 cases in the pCR group (TRG0) and 216 cases in the non-pCR group (TRG1–TRG3). The outcomes of patients with LARC after NACT were highly correlated with 13 radiomics features based on CT (6 grayscale features: mean, variance, deviation, skewness, kurtosis, energy; 3 texture features: contrast, correlation, homogeneity; 4 shape features: perimeter, diameter, area, shape). The AUC value of DT model based on CT was 0.772 [95% CI (0.656, 0.888)] for predicting pCR after the NACT in the patients with LARC. The accuracy of prediction was higher for the non-PCR patients (97.2%), but lower for the pCR patients (57.1%).ConclusionsIn this preliminary study, the DT model based on CT shows a lower prediction efficiency in judging pCR patient with LARC before operation as compared with homogeneity researches, so a more accurate prediction model of pCR patient will be optimized through advancing algorithm, expanding data set, and digging up more radiomics features.
ObjectiveTo make a comprehensive review of the value of radiomics for prediction of therapeutic responses to neoadjuvant chemoradiotherapy (NCRT) in patients with locally advanced rectal cancer (LARC).MethodRelevant literatures about the therapeutic response evaluation of LARC by using radiomics were collected to make an review.ResultRadiomics had good predictive value in terms of complete pathologic response (pCR) and treatment effectiveness of NCRT in patients with LARC.ConclusionRadiomics, a new imaging diagnostic technique, plays an important role in the prediction of the efficacy of NCRT in LARC.
ObjectiveTo establish a model for predicting microvascular invasion (MVI) of hepatocellular carcinoma based on magnetic resonance imaging (MRI) radiomics features.MethodsThe clinical and pathological datas of 190 patients with hepatocellular carcinoma who received surgical treatment in our hospital from September 2017 to May 2020 were prospectively collected. The patients were randomly divided into training group (n=158) and test group (n=32) with a ratio of 5∶1. Gadoxetate disodium (Gd-EOB-DTPA) -enhanced MR images of arterial phase and hepatobiliary phase were used to select radiomics features through the region of interest (ROI). The ROI included the tumor lesions and the area dilating to 2 cm from the margin of the tumor. Based on a machine learning algorithm logistic, a radiomics model for predicting MVI of hepatocellular carcinoma was established in the training group, and the model was evaluated in the test group.ResultsSeven radiomics features were obtained. The area under the receiver operating characteristic curve (AUC) of the training group and the test group were 0.830 [95%CI (0.669, 0.811)] and 0.734 [95%CI (0.600, 0.936)], respectively.ConclusionThe model based on MRI radiomics features seems to be a promising approach for predicting the microvascular invasion of hepatocellular carcinoma, which is of clinical significance for the management of hepatocellular carcinoma treatment.