west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "revision reason" 1 results
  • Revision reasons and prosthesis selection of Crowe Ⅳ developmental dysplasia of hip after total hip arthroplasty

    ObjectiveTo investigate revision reasons and prosthesis selection of Crowe Ⅳ developmental dysplasia of the hip (DDH) after total hip arthroplasty (THA). MethodsA clinical data of 14 patients (15 hips) with Crowe Ⅳ DDH, who underwent a revision hip arthroplasty between January 2008 and May 2018, was retrospectively reviewed. There were 1 male (1 hip) and 13 females (14 hips). The age ranged from 27 to 63 years (mean, 45.0 years). There were 7 cases of left hip, 6 cases of right hip, and 1 case of bilateral hips. The prosthetic interfaces of primary THA were metal-on-polyethylene (MOP) in 9 hips, ceramic-on-ceramic (COC) in 4 hips, ceramic-on-polyethylene (COP) in 1 hip, and ceramic-on-metal in 1 hip. The time from primary THA to revision was 3-204 months (mean, 65.0 months). The causes of revision included aseptic loosening in 7 hips, dislocation in 3 hips, periprosthetic joint infection in 2 hips, osteolysis in 1 hip, nonunion of osteotomy in 1 hip, and a small-angle of femoral anteversion in 1 hip. Preoperative Harris score was 54.1±17.8 and the range of motion (ROM) of flexion was (92.7±20.2)°. Preoperative X-ray films showed the acetabular bone defect in 11 hips and osteolysis of femoral side in 4 hips. During the revision, the prostheses with COP and COC interfaces were used in 5 hips and 10 hips, respectively. Both acetabular and femoral revisions were performed in 11 hips and only femoral revision was performed in 4 hips.ResultsThe mean operation time was 3.7 hours (range, 1.5-6.0 hours). The mean intraoperative blood loss was 940.0 mL (range, 200-2 000 mL). All patients were followed up 16-142 months (mean, 73.9 months). Postoperative X-ray films showed no difference in inclination and anteversion between primary THA and revision (P>0.05). The height of rotation center and offset after revision were higher than those after primary THA, and the difference in offset was significant (P<0.05). At last follow-up, the Harris score and ROM of flexion were 85.0±7.3 and (115.0±17.0)°, respectively, which were significantly higher when compared with those before revision (t=8.909, P=0.000; t=4.911, P=0.000). Three hips underwent a re-revision operation. All protheses were fixed well and no radiolucent line, loosening, or subsidence was observed at last follow-up.ConclusionThe most common reason for revision in patients with Crowe Ⅳ DDH after THA was aseptic loosening. Due to high activity demand of this population, the prosthesis with MOP interface should be prevented and the prosthesis with COC interface could be alternative. Metal block, cup-cage, and reinforcement ring were reasonable solutions for reconstruction of acetabulum with severe bone defects and have satisfactory effectiveness. S-ROM prosthesis should be the preferred stem for neither primary THA or revision.

    Release date:2020-06-15 02:43 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content