west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "signaling molecule" 3 results
  • Research progress on signaling molecules involved in articular cartilage repair

    After the articular cartilage injury, the metabolic level is increased during the progressive degeneration, the chondrocytes secrete a variety of inflammatory factors, and the original cell phenotype is gradually changed. For a long time, a large number of researchers have done a lot of researches to promote anabolism of chondrocytes and to maintain the stability of chondrocyte phenotype. There are many molecular signaling pathways involved in the process of promoting cartilage repair. This review focuses on the key signaling molecules in articular cartilage repair, such as transforming growth factor-beta and bone morphogenetic protein, and reveals their roles in the process of cartilage injury and repair, so that researchers in related fields can understand the molecular mechanism of cartilage injury and repair widely and deeply. Based on this, they may find promising targets and biological methods for the treatment of cartilage injury.

    Release date:2019-04-15 05:31 Export PDF Favorites Scan
  • Progress of study on relationship between endoplasmic reticulum stress and cell proliferation

    ObjectiveTo summarize the progress of study on the relationship between endoplasmic reticulum stress and cell proliferation and provide evidence with reliable evidence-based data to the experiment on the field of tissue damage repair, organ proliferation, and regeneration.MethodThe relevant literatures about the progress of multiple signaling pathways related to the endoplasmic reticulum stress in the cell proliferation and injury repair in recent years were reviewed.ResultsThe endoplasmic reticulum stress participated in the process of proliferation and regeneration in the intestinal epithelial cells, skeletal muscle cells, islet cells, and hepatocytes through different pathways, which involved the three pathways of unfolded protein reaction that interacted with interleukin-6, tumor necrosis factor-α, vascular endothelial growth factor, Wnt, etc.ConclusionsAlthough endoplasmic reticulum stress has been widely debated in the field of determining cell fate, after we reviewed recent studies on endoplasmic reticulum stress in maintaining cell survival and promoting cell proliferation, the complexity, diversity, and importance of the endoplasmic reticulum stress in promoting cell proliferation have been presented in front of us. It not only promotes cell proliferation through the classical signaling pathway with Wnt protein, but also acts to repair tissue and promote proliferation by interacting with Musashi protein independently of the Notch pathway. The complex reaction pathway interacts with different stimulating factors in different cells, providing research directions and exploration possibilities for cell proliferation, injury repair, and organ regeneration, reveales the critical role of endoplasmic reticulum stress in cell proliferation.

    Release date:2020-02-28 02:21 Export PDF Favorites Scan
  • Research progress in regulation of hair growth by dermal adipose tissue

    Objective To summarize the dynamic and synchronized changes between the hair cycle and dermal adipose tissue as well as the impact of dermal adipose tissue on hair growth, and to provide a new research idea for the clinical treatment of hair loss. MethodsAn extensive review of relevant literature both domestic and international was conducted, analyzing and summarizing the impact of dermal adipose precursor cells, mature dermal adipocytes, and the processes of adipogenesis in dermal adipose tissue on the transition of hair cycle phases. ResultsDermal adipose tissue is anatomically adjacent to hair follicles and closely related to the changes in the hair cycle. The proliferation and differentiation of dermal adipose precursor cells promote the transition of hair cycle from telogen to anagen, while mature adipocytes can accelerate the transition from anagen to catagen of the hair cycle by expressing signaling molecules, with adipogenesis in dermal adipose tissue and hair cycle transition signaling coexistence. ConclusionDermal adipose tissue affects the transition of the hair cycle and regulates hair growth by secreting various signaling molecules. However, the quantity and depth of existing literature are far from sufficient to fully elucidate its prominent role in regulating the hair cycle, and the specific regulatory mechanisms needs to be further studied.

    Release date:2024-05-13 02:30 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content