west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "simulation" 76 results
  • COMPUTER AID DESIGNED OPERATION OF COMPLICATED CALCANEAL FRACTURE BY 3D SIMULATION TECHNIQUE

    Objective To precisely treat compl icated calcaneal fracture by 3D simulation through computer aid designed operation. Methods From November 2007 to March 2008, 38 patients of calcaneal fracture were treated. There were 29 males and 9 females aged 14-69 years old (average 29.8 years old). According to Sanders classification, there were 4 patients oftype I, 14 of type II, 12 of type III, and 8 of type IV. The time between injury and surgery was 3 hours to 5 days. The CT images of calcaneal fracture of 38 patients were put into computer for 3D reconstruction, then the Bouml;hler angles were measured and bone grafting angles were designed. According to the angle surveyed by the computer, the individual-oriented operation program was made, and then the operation was done under C-arm X-ray machine. Results The preoperative Bouml;hler angel was (34.58 ± 4.38)° in the normal side and (8.33 ± 12.62)° in the injured side, indicating there was significant difference (P lt; 0.05). During the process of the poking reduction by 3D simulation, when the bone rotating angle was (28.84 ± 6.51)°, the Bouml;hler angel was restored to (32.86 ± 1.72)°, indicating there was no significant difference when compared with the normal side before operation (P gt; 0.05), and significant difference compared with the injured side before operation (P lt; 0.05). Twenty-eight patients were followed up for 12-22 months (average 18 months). The Bouml;hler angel was restored to (32.41 ± 1.42)° 1 year after operation. According to the foot function scoring system made by American Ankle Surgery Association, 16 cases were graded as excellent, 10 as good, 1 as fair, 1 as poor, and the excellent and good rate was 92.9%. Conclusion Computer aid designed operation of compl icated calcaneal fracture by 3D simulation technique can restore the Bouml;hler angel and subtalar joint precisely. It is aneffective supplementary treatment method for calcaneal fracture.

    Release date:2016-09-01 09:08 Export PDF Favorites Scan
  • The Exploring and Practicing of Scene Simulation of Medical Disputes in Clinical Skills Teaching

    ObjectiveTo explore the teaching effects of scene simulation of medical disputes in clinical skills training. MethodsBetween September 2012 and June 2013, 93 clinical medicine undergraduates in Grade 2010 (8-year study) were randomly divided into the scene simulation teaching of medical disputes group (n=47) and the control group with traditional training (n=46) for clinical skills training. Teaching effects were assessed by clinical skills operation tests. ResultsThrough scene simulation teaching of medical disputes, the trainees' clinical disposal ability, operating skills, communication skills, cultural knowledge, and legal knowledge dimension scores were all significantly better than previous tests (P<0.05). ConclusionScene simulation of medical disputes has an obvious advantage in clinical skills training.

    Release date: Export PDF Favorites Scan
  • Application of Medical Simulation Combined with Case-based Learning in Training Trainee Doctors in Emergency Department

    ObjectiveTo investigate the effects of medical simulation (MST) combined with case-based learning (CBL) in training of trainee doctors in emergency department. MethodA total of 120 trainee doctors practicing in the emergency department between March 2008 and December 2014 were randomly divided into two groups:MST combined with CBL group and CBL group, who accepted MST combined with CBL training and merely CBL training, respectively. The training effects were evaluated in terms of theoretical knowledge, practical operation, comprehensive abilities of case analysis and questionnaire survey. The results were compared and analyzed with the t test. The P value less than 0.05 was a significant difference. ResultsTrainee doctors in MST combined with CBL group acquired higher scores in all of the indicators (P<0.05). ConclusionsMST combined with CBL is a feasible method and has a better effect in training of trainee doctors in Emergency Department.

    Release date: Export PDF Favorites Scan
  • Design of a Multifunctional and Transparent Urinary System Model

    This article describes a novel Multifunctional and Transparent Urinary System Model (MTUSM),which can be applied to anatomy teaching, operational training of clinical skills as well as simulated experiments in vitro. This model covers kidneys, ureters, bladder, prostate, male and female urethra, bracket and pedestal,etc. Based on human anatomy structure and parameters, MTUSM consists of two transparent layers i.e. transparent organic glass external layer,which constraints the internal layer and maintains shape of the model, and transparent silica gel internal layer, which possesses perfect elasticity and deformability. It is obvious that this model is preferable in simulating the structure of human urinary system by applying hierarchical fabrication. Meanwhile, the transparent design, which makes the inner structure, internal operations and experiments visual,facilitates teaching instruction and understanding. With the advantages of simple making, high-findelity, unique structure and multiple functions, this model will have a broad application prospect and great practical value.

    Release date: Export PDF Favorites Scan
  • Development of a Software for 3D Virtual Phantom Design

    In this paper, we present a 3D virtual phantom design software, which was developed based on object-oriented programming methodology and dedicated to medical physics research. This software was named Magical Phantom (MPhantom), which is composed of 3D visual builder module and virtual CT scanner. The users can conveniently construct any complex 3D phantom, and then export the phantom as DICOM 3.0 CT images. MPhantom is a user-friendly and powerful software for 3D phantom configuration, and has passed the real scene's application test. MPhantom will accelerate the Monte Carlo simulation for dose calculation in radiation therapy and X ray imaging reconstruction algorithm research.

    Release date: Export PDF Favorites Scan
  • Simulation Prediction of Bone Defect Repair Using Biodegradable Scaffold Based on Finite Element Method

    Aiming at the problem of scaffold degradation in bone tissue engineering, we studied the feasibility that controlls bone defect repair effect with the inhomogeneous structure of scaffold. The prediction model of bone defect repair which contains governing equations for bone formation and scaffold degradation was constructed on the basis of analyzing the process and main influence factors of bone repair in bone tissue engineering. The process of bone defect repair and bone structure after repairing can be predicted by combining the model with finite element method (FEM). Bone defect repair effects with homogenous and inhomogeneous scaffold were simulated respectively by using the above method. The simulation results illustrated that repair effect could be impacted by scaffold structure obviously and it can also be controlled via the inhomogeneous structure of scaffold with some feasibility.

    Release date: Export PDF Favorites Scan
  • Investigation on Bioactive Protective Function of Amino Acids to Insulin by Molecular Simulation

    Heat sensitive protein medicines are increasingly exhibiting their critical importance on treatment of various diseases at present. But their popularization and application meet a great challenge because of their heat instability. In the present study, insulin was taken as a heat sensitive protein medicine and amino acid as bio-protective agent in order to investigate if these amino acids can protect the insulin from losing its bioactivity due to desiccation. The experiment was performed by using replica exchange molecular simulation (REMD) method and Gromacs software with Gromos96 (53a6) force field. The REMD results indicated that these amino acids could protect the bioactive structure of insulin during desiccation. The configurations of the protected insulin were preserved very well. Those results proved that amino acid is a kind of good bioactive protective agent for the heat sensitive protein medicines.

    Release date: Export PDF Favorites Scan
  • Dynamic Modeling and Simulating of Squatting-standing Action of Human Body

    It is very difficult for stroke patients to complete the action of squatting-standing because their equilibrium function ability has been seriously declined. It was necessary, therefore, to do a deep research on the action of human squatting-standing and to set up an accurate model and simulation. In our modeling research, the movements of upper limbs and head was neglected, and a seven-segment model was developed to establish the coordinate system of human squatting-standing action. It calculated the knee joint moment and hip joint moment during squatting and standing by utilizing Lagrange method, and then simulated this mathematical model by utilizing Matlab. Geometric model of human squatting-standing was developed and simulated in ADAMS which proved that the established Lagrange model was reasonable. It would also provide significant theoretical references for further study and development of squatting-standing rehabilitation training equipment.

    Release date: Export PDF Favorites Scan
  • Design and Implementation of the Pulse Wave Generator with Field Programmable Gate Array Based on Windkessel Model

    Pulse waves contain rich physiological and pathological information of the human vascular system. The pulse wave diagnosis systems are very helpful for the clinical diagnosis and treatment of cardiovascular diseases. Accurate pulse waveform is necessary to evaluate the performances of the pulse wave equipment. However, it is difficult to obtain accurate pulse waveform due to several kinds of physiological and pathological conditions for testing and maintaining the pulse wave acquisition devices. A pulse wave generator was designed and implemented in the present study for this application. The blood flow in the vessel was simulated by modeling the cardiovascular system with windkessel model. Pulse waves can be generated based on the vascular systems with four kinds of resistance. Some functional models such as setting up noise types and signal noise ratio (SNR) values were also added in the designed generator. With the need of portability, high speed dynamic response, scalability and low power consumption for the system, field programmable gate array (FPGA) was chosen as hardware platform, and almost all the works, such as developing an algorithm for pulse waveform and interfacing with memory and liquid crystal display (LCD), were implemented under the flow of system on a programmable chip (SOPC) development. When users input in the key parameters through LCD and touch screen, the corresponding pulse wave will be displayed on the LCD and the desired pulse waveform can be accessed from the analog output channel as well. The structure of the designed pulse wave generator is simple and it can provide accurate solutions for studying and teaching pulse waves and the detection of the equipments for acquisition and diagnosis of pulse wave.

    Release date: Export PDF Favorites Scan
  • Closed-loop Control for Chest Compression Based on Coronary Perfusion Pressure: A Computer Simulation Study

    In this study, a closed-loop controller for chest compression which adjusts chest compression depth according to the coronary perfusion pressure (CPP) was proposed. An effective and personalized chest compression method for automatic mechanical compression devices was provided, and the traditional and uniform chest compression standard neglecting individual difference was improved. This study rebuilds Charles F. Babbs human circulation model with CPP simulation module and proposes a closed-loop controller based on a fuzzy control algorithm. The performance of the fuzzy controller was evaluated and compared to that of a traditional PID controller in computer simulation studies. The simulation results demonstrated that the fuzzy closed-loop controller produced shorter regulation time, fewer oscillations and smaller overshoot than those of the traditional PID controller and outperforms the traditional PID controller in CPP regulation and maintenance.

    Release date: Export PDF Favorites Scan
8 pages Previous 1 2 3 ... 8 Next

Format

Content