west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "simulation" 81 results
  • A comparative analysis of national and international thoracic surgery simulation-based medical education development based on bibliometrics

    Objective To systematically analyze and compare the research literature of thoracic surgery simulation-based medical education (SBME) at home and abroad, and provide ideas for the future development of thoracic surgery SBME in China. Methods Using word frequency analysis and cluster analysis as analysis methods, CiteSpace visualization software and Excel statistical software as tools, the domestic and foreign SBME literature retrieved from PubMed and CNKI databases were visualized and statistically analyzed respectively. Results A total of 2 491 domestic and foreign literature on SBME in thoracic surgery were included. The annual number of foreign publications showed an increasing trend. The top three countries in terms of number of publications were the USA (n=581), Canada (n=105) and Germany (n=57); "cardiac surgery", "medical knowledge medical knowledge" and "medical education" are the hotspots of research in the direction of thoracic surgery simulation, while "lung cancer", "surgical training" and "3D printing" were still in the process of explosion. The core research themes were endoscope simulation trainer, scenario-based simulation teaching methods, standardized patients and virtual reality models. Conclusion Domestic SBME in thoracic surgery should learn from foreign development experience, keep up with the frontier and integrate cutting-edge technology, innovate the curriculum and offer non-technical skills teaching, and improve the system and focus on software construction.

    Release date:2024-01-04 03:39 Export PDF Favorites Scan
  • Equivalent Lever Principle of Ossicular Chain and Amplitude Reduction Effect of Internal Ear Lymph

    This paper makes persuasive demonstrations on some problems about the human ear sound transmission principle in existing physiological textbooks and reference books, and puts forward the authors' view to make up for its literature. Exerting the knowledge of lever in physics and the acoustics theory, we come up with an equivalent simplified model of manubrium mallei which is to meet the requirements as the long arm of the lever. We also set up an equivalent simplified model of ossicular chain--a combination of levers of ossicular chain. We disassemble the model into two simple levers, and make full analysis and demonstration on them. Through the calculation and comparison of displacement amplitudes in both external auditory canal air and internal ear lymph, we may draw a conclusion that the key reason, which the sound displacement amplitude is to be decreased to adapt to the endurance limit of the basement membrane, is that the density and sound speed in lymph is much higher than those in the air.

    Release date: Export PDF Favorites Scan
  • A correction method for calculating resistance of Westerhof ’s resistor

    The objective of the mock circulatory system (MCS) is to construct the characteristics of cardiovascular hemodynamics. Westerhof ’s resistor that often regarded as the laminar flow resistance in the MCS, is commonly used to simulate the peripheral resistance of the cardiovascular system. However, the theoretical calculation value of fluid resistance of the Westerhof ’s resistor shows distinguished difference with the actual needed value. If the theoretical resistance is regarded as the actual needed one and be used directly in the experiment, the experimental accuracy would not be acceptable. In order to improve the accuracy, an effective correction method for calculating the resistance of Westerhof ’s resistor was proposed in this paper. Simulation software was also developed to compute accurately the capillary number, total length and resistance. The results demonstrate the proposed method is able to reduce the difficulty and complexity of the design of the resistor, which would obviously increase the manufactured precision of the Westerhof ’s resistor. Simulation software would provide great support to the construction of various MCSs.

    Release date:2017-08-21 04:00 Export PDF Favorites Scan
  • Design and Implementation of the Pulse Wave Generator with Field Programmable Gate Array Based on Windkessel Model

    Pulse waves contain rich physiological and pathological information of the human vascular system. The pulse wave diagnosis systems are very helpful for the clinical diagnosis and treatment of cardiovascular diseases. Accurate pulse waveform is necessary to evaluate the performances of the pulse wave equipment. However, it is difficult to obtain accurate pulse waveform due to several kinds of physiological and pathological conditions for testing and maintaining the pulse wave acquisition devices. A pulse wave generator was designed and implemented in the present study for this application. The blood flow in the vessel was simulated by modeling the cardiovascular system with windkessel model. Pulse waves can be generated based on the vascular systems with four kinds of resistance. Some functional models such as setting up noise types and signal noise ratio (SNR) values were also added in the designed generator. With the need of portability, high speed dynamic response, scalability and low power consumption for the system, field programmable gate array (FPGA) was chosen as hardware platform, and almost all the works, such as developing an algorithm for pulse waveform and interfacing with memory and liquid crystal display (LCD), were implemented under the flow of system on a programmable chip (SOPC) development. When users input in the key parameters through LCD and touch screen, the corresponding pulse wave will be displayed on the LCD and the desired pulse waveform can be accessed from the analog output channel as well. The structure of the designed pulse wave generator is simple and it can provide accurate solutions for studying and teaching pulse waves and the detection of the equipments for acquisition and diagnosis of pulse wave.

    Release date: Export PDF Favorites Scan
  • Effectiveness and predictive value of computer finite element modeling of thoracic endovascular aortic repair based on hemodynamics

    Objective To explore the effectiveness and predictive value of computer simulated thoracic endovascular aortic repair (TEVAR). Methods The clinical data of the patients with Stanford type B aortic dissection who underwent TEVAR from February 2019 to February 2022 in our hospital was collected. According to whether there was residual false cavity around the stent about 1 week after TEVAR, the patients were divided into a false cavity closure group and a false cavity residual group. Based on computer simulation, personalized design and three-dimensional construction of the stent framework and covering were carried out. After the stent framework and membrane were assembled, they were pressed and placed into the reconstructed aortic dissection model. TEVAR computer simulation was performed, and the simulation results were analyzed for hemodynamics to obtain the maximum blood flow velocity and maximum wall shear stress at the false lumen outlet level at the peak systolic velocity of the ventricle, which were compared with the real hemodynamic data of the patient after TEVAR surgery. The impact of hemodynamics on the residual false lumen around the stent in the near future based on computer simulation of hemodynamic data after TEVAR surgery was further explored. Results Finally a total of 28 patients were collected, including 24 males and 4 females aged 53.390±11.020 years. There were 18 patients in the false cavity closure group, and 10 patients in the false cavity residual group. The error rate of shear stress of the distal decompression port of the false cavity after computer simulation TEVAR was 6%-25%, and the error rate of blood flow velocity was 3%-31%. There was no statistical difference in age, proportion of male, history of hypertension, history of diabetes, smoking history, prothrombin time or activated partial thromboplatin time at admission between the two groups (all P>0.05). The blood flow velocity and shear stress after TEVAR were statistically significant (all P<0.05). The maximum shear stress (OR=1.823, P=0.010) of the false cavity at the level of the distal decompression port after simulated TEVAR was an independent risk factor for the residual false cavity around the stent. Receiver operating characteristic curve analysis showed that the area under the curve corresponding to the maximum shear stress of false cavity at the level of distal decompression port after simulated TEVAR was 0.872, the best cross-sectional value was 8.469 Pa, and the sensitivity and specificity were 90.0% and 83.3%, respectively. Conclusion Computers can effectively simulate TEVAR and perform hemodynamic analysis before and after TEVAR surgery through simulation. Maximum shear stress at the decompression port of the distal end of the false cavity is an independent risk factor for the residual false cavity around the stent. When it is greater than 8.469 Pa, the probability of residual false cavity around the stent increases greatly.

    Release date:2024-01-04 03:39 Export PDF Favorites Scan
  • Numerical simulation of the effect of virtual stent release pose on the expansion results

    The current finite element analysis of vascular stent expansion does not take into account the effect of the stent release pose on the expansion results. In this study, stent and vessel model were established by Pro/E. Five kinds of finite element assembly models were constructed by ABAQUS, including 0 degree without eccentricity model, 3 degree without eccentricity model, 5 degree without eccentricity model, 0 degree axial eccentricity model and 0 degree radial eccentricity model. These models were divided into two groups of experiments for numerical simulation with respect to angle and eccentricity. The mechanical parameters such as foreshortening rate, radial recoil rate and dog boning rate were calculated. The influence of angle and eccentricity on the numerical simulation was obtained by comparative analysis. Calculation results showed that the residual stenosis rates were 38.3%, 38.4%, 38.4%, 35.7% and 38.2% respectively for the 5 models. The results indicate that the pose has less effect on the numerical simulation results so that it can be neglected when the accuracy of the result is not highly required, and the basic model as 0 degree without eccentricity model is feasible for numerical simulation.

    Release date:2018-04-16 09:57 Export PDF Favorites Scan
  • Indoor simulation training system for brain-controlled wheelchair based on steady-state visual evoked potentials

    Brain-controlled wheelchair (BCW) is one of the important applications of brain-computer interface (BCI) technology. The present research shows that simulation control training is of great significance for the application of BCW. In order to improve the BCW control ability of users and promote the application of BCW under the condition of safety, this paper builds an indoor simulation training system based on the steady-state visual evoked potentials for BCW. The system includes visual stimulus paradigm design and implementation, electroencephalogram acquisition and processing, indoor simulation environment modeling, path planning, and simulation wheelchair control, etc. To test the performance of the system, a training experiment involving three kinds of indoor path-control tasks is designed and 10 subjects were recruited for the 5-day training experiment. By comparing the results before and after the training experiment, it was found that the average number of commands in Task 1, Task 2, and Task 3 decreased by 29.5%, 21.4%, and 25.4%, respectively (P < 0.001). And the average number of commands used by the subjects to complete all tasks decreased by 25.4% (P < 0.001). The experimental results show that the training of subjects through the indoor simulation training system built in this paper can improve their proficiency and efficiency of BCW control to a certain extent, which verifies the practicability of the system and provides an effective assistant method to promote the indoor application of BCW.

    Release date:2020-08-21 07:07 Export PDF Favorites Scan
  • Research on adaptive quasi-linear viscoelastic model for nonlinear viscoelastic properties of in vivo soft tissues

    The mechanical behavior modeling of human soft biological tissues is a key issue for a large number of medical applications, such as surgery simulation, surgery planning, diagnosis, etc. To develop a biomechanical model of human soft tissues under large deformation for surgery simulation, the adaptive quasi-linear viscoelastic (AQLV) model was proposed and applied in human forearm soft tissues by indentation tests. An incremental ramp-and-hold test was carried out to calibrate the model parameters. To verify the predictive ability of the AQLV model, the incremental ramp-and-hold test, a single large amplitude ramp-and-hold test and a sinusoidal cyclic test at large strain amplitude were adopted in this study. Results showed that the AQLV model could predict the test results under the three kinds of load conditions. It is concluded that the AQLV model is feasible to describe the nonlinear viscoelastic properties of in vivo soft tissues under large deformation. It is promising that this model can be selected as one of the soft tissues models in the software design for surgery simulation or diagnosis.

    Release date:2017-10-23 02:15 Export PDF Favorites Scan
  • Ultrasound Simulation of Carotid Artery Plaque and System Implementation

    A method of ultrasonic simulation based on the FIELD II software platform for carotid artery plaque was proposed according to the analysis for geometrical shape, tissue characteristics and acoustic properties of carotid artery plaques in clinic, and then a simulation system was developed by using the MATLAB graphical user interface (GUI). In the simulation and development, a three-dimensional geometric model of blood vessel with plaques was set up by using the metaball implicit surface technique, and a tissue model was established based on the scatterers with spatial position of gamma random distribution. Comparison of the statistical and geometrical characteristics from simulated ultrasound B-mode images with those based on clinical ones and preset values, the results fully demonstrated the effectiveness of the simulation methods and system.

    Release date:2016-12-19 11:20 Export PDF Favorites Scan
  • Analysis of long-term effect on cardiopulmonary resuscitation skills in medical students with different training methods

    ObjectiveTo analyze the long-term effect on cardiopulmonary resuscitation skill between video-led and scene simulation training and traditional instructor-led courses in medical student with eight-year program.MethodsNinety-nine medical students with eight-year program who studied in Peking Union Medical College were trained in cardiopulmonary resuscitation skill from January to February 2018. They were randomly divided into two groups, 53 students participated in basic life support course training, which belonged to video-led and scene simulation training as the trial group, and 46 students were trained by traditional instructor-led courses as the control group. In January 2019, the above 99 students were re-evaluated for cardiopulmonary resuscitation, and the outcome of cardiopulmonary resuscitation skill test in total scores and sub-items scores between two groups were compared. The data were analyzed using t test and Wilcoxon rank sum test.ResultsThe total average scores of the trial group (8.02±1.11) was higher than that of the control group (6.85±1.50) (P<0.05). The sub-items scores of the trial group in the three aspects of on-site assessment, chest compressions and simple respirators (1.64±0.37, 3.38±0.46, 1.52±0.58) were higher than those of the control group (1.33±0.45, 2.80±0.76, 1.19±0.58) (P<0.05). In terms of opening airway, there was no significant difference in scores between the two groups (1.02±0.47 vs. 1.10±0.45, P>0.05). The excellent rate of the trial group (60.3%) was significantly higher than that of the control group (30.4%) (P<0.05), and the unqualified rate (5.6%) was significantly lower than that of the control group (21.7%) (P<0.05).ConclusionsThe video-led and scene simulation training has a better effect on cardiopulmonary resuscitation skills acquisition and long-term maintenance than traditional instructor-led courses for medical student with eight-year program.

    Release date:2019-12-12 04:12 Export PDF Favorites Scan
9 pages Previous 1 2 3 ... 9 Next

Format

Content