Objective To analyze and summarize the research progression of phenotypic markers of hepatic sinusoidal endothelial cell (HSEC) and its role in the development and progression of the liver diseases. Methods Databases such as PubMed, Wanfang, CNKI, etc were retrieved for the latest articles on research advance in HSEC using “hepatic sinus endothelial cell”, “liver regeneration”, and “liver disease” as key words. All of the publications about studies on relation between HSEC and liver disease were reviewed and summarized. Results HSEC with specific cytoarchitectures and phenotypic markers was initially received “the message of damage” in the process of liver regeneration, hepatic immunological tolerance, hepatic fibrosis, and liver damage. Additionally, HSEC as the first barrier not only enabled liver to be protected but also was regarded as the first alternation of liver damage. Therefore, HSEC played a great important role in the process of the onset and progression of the liver disease. Conclusions The function of HSEC is complex. How do play a role and its the mechanism is unclarified, it is needed to be further studied.
Objective To examine the effect of zinc finger protein A20 on regeneration of small-for-sized liver allograft, graft rejection and recipient rat survival time. Methods Small-for-sized liver transplantation with 30% partial liver allograft was performed by using a b-rejection combination rat model of DA (RT1a) to Lewis (RT1l) rats. The rats were grouped into rAdEasy-A20 treatment group (A20 group), the control empty Ad vector rAdEasy treatment group (rAdEasy group) and PS control treatment group (PS group). Ex vivo gene transfer in donor liver graft was performed through portal vein infusion. Animals were assessed for survival days, expression of A20 in liver graft, liver graft regeneration, hepatocyte apoptosis, graft rejection, NF-κB activation and ICAM-1 mRNA expression in liver graft sinusoidal endothelial cells (LSECs), number of liver graft infiltrating mononuclear cells (LIMCs) and the subproportion of NK/NKT cells, and serum IFN-γ level. Results Survival day of A20 group rats was prominently longer than that of PS group rats and rAdEasy group rats (P=0.001 8), whereas survival day of rAdEasy group rats was remarkably shorter than that of PS group rats (P=0.001 8). Regeneration of the small-for-sized liver allograft was markedly augmented by A20, BrdU labelling index of hepatocyte on postoperative day 4 was significantly increased in the A20 group compared with the PS group and rAdEasy group (P<0.01). Hepatocyte apoptosis on postoperative day 4 was significantly inhibited by A20 (P<0.01). On postoperative day 4, histologic examination revealed a mild rejection in the A20 group but a more severe rejection in the PS and rAdEasy groups. NF-κB activity and ICAM-1 mRNA expression in LSECs on postoperative day 1 were notably suppressed by A20 overexpression. Flow cytometry analysis showed a marked downregulation of LIMCs number by A20, including more prominent decrease in the subproportion of NK/NKT cells on postoperative day 1 and 4, respectively (P<0.05). Serum IFN-γ level on postoperative day 4 was also significantly suppressed by A20 overexpression (P<0.05). Conclusion These data suggest that A20 could effectively promote small-for-sized liver allograft regeneration, suppresses rejection and prolong survival days of recipient rats. These effects of A20 could be related to an inhibition of LSECs activation, suppression of infiltration of LIMCs and the subpopulations such as NK cells and NKT cells into liver graft, and inhibition of hepatocyte apoptosis.
ObjectiveTo investigate relationship between liver non-parenchymal cells and hepatic ischemia-reperfusion injury (HIRI).MethodThe relevant literatures on researches of the relationship between HIRI and liver non-parenchymal cells were analyzed and reviewed.ResultsDuring HIRI, hepatocytes could be severely damaged by aseptic inflammatory reaction and apoptosis. The liver non-parenchymal cells included Kupffer cells, sinusoidal endothelial cells, hepatic stellate cells, and dendritic cells, which could release a variety of cytokines and inflammatory mediators to promote the damage, and some liver non-parenchymal cells also had effect on reducing HIRI, for example: Kupffer cells could express heme oxygenase-1 to reduce HIRI, and hepatic stellate cells may participate in the repair process after HIRI. The role of liver non-parenchymal cells in HIRI was complex, but it also had potential therapeutic value.ConclusionLiver non-parenchymal cells can affect HIRI through a variety of mechanisms, which provide new goals and strategies for clinical reduction of HIRI.
Objective To summarize the research progress on the regulation of hepatic sinusoidal microenvironment to promote liver regeneration based on liver sinusoidal endothelial cells (LSECs), aiming to further clarify the mechanism of liver regeneration and provide new ideas and methods for clinical promotion of liver regeneration and prevention of liver failure. Method The basic and clinical research studies on LSECs and liver regeneration at home and abroad in recent years were searched and reviewed. Results Differentiated LSECs played an important role in liver regeneration, regulated the homeostasis of hepatic sinusoid microenvironment by paracrine and autocrine, and participated in the whole process of promoting liver regeneration, such as hepatocyte proliferation and neovascularization after acute and chronic liver injury. Conclusion In the process of liver regeneration after all kinds of acute and chronic liver injury, LSECs promote liver regeneration by regulating hepatic sinusoid microenvironment, which will provide new strategies and methods for clinical promotion of liver regeneration and prevention of liver failure after hepatectomy.