Objective To compare the reparative effects between the acellular small intestinal submucosa andthe acellular amnion as dressings for traumatic skin defects. Methods Three full-thickness skin defects, which wereclose to the vertebral column of the pig, were created on both sides of the dorsum. The skin defects were randomlydivided into three groups. In each group, the following different materials were used to cover the skin defects: theacellular amnion in Group A, the acellular small intestinal submucosa (SIS) in Group B, and the physiological saline aguze in Group C (the control group). The specimens from the skin defects were harvested for a histological evaluation and for determination of the hydroxyproline content at 10 (2 pigs), 20 (2 pigs), and 30 days (3 pigs). We observed the healing process of the wound and its healing rate, counted the inflammatory cells, vasecular endothelial cells, and proliferating cells, and determined the hydroxyproline content. Results The acellular amnion in Group A and acellular SIS in Group B adhered to the wound tightly, but they did not adhere to the dressing; when the dressing was changed, the wound did not bleed. The saline gauze in Group C adhred to the wound tightly, but when the dressing was changed, the wound bled until 22 days after operation. Under the microscope, the collagen in the tissue below the epithelium was arranged more regularly and there were fewer cells concerned with inflammation in Groups A and B than in Group C at 10, 20, and 30 days after operation. At 10, 20, and 30 days after operation, the wound healing rate was greater in Groups A and B than in Group C, The number of the inflammatory cells and the proliferating cells were greater in Groupo C than in Groups A and B. There was a statistically significant difference (P lt; 0.05),At 20 and 30 days after operatin, the content of hydroxyproline was greater in Group c than in Group A and B. There was a statistically significant difference (P lt; 0.05). However, there was no statistically significant difference between Group A and Group B in the wound healing rate, the numbers of the inflammatory cells, vascular endothelial cells and prokiferating cells, and the content of hydroxyproline(P gt; 0.050). There was no statistically significant difference among the three groups in the number of the vascular endothelial cells. Conclusion Compared with Group C........
Small intestinal submucosa (SIS) is a natural decellularized extracellular matrix material. Due to its excellent biocompatibility, unique biomechanical properties and biological activity, it has been widely used as a scaffold in regenerative medicine. This article reviews the recent progress in the characterization and medical application of SIS respectively. The specific biological properties of the SIS, as well as its interaction with cells, are highlighted. Some of the SIS products and clinical cases are also reviewed and discussed.
Objective To investigate the effect of porcine small intestinal submucosa extracellular matrix (PSISM) on the vitality and gene regulation of hepatocyte so as to lay the experimental foundation for the application of PSISM in liver tissue engineering. Methods The experiment was divided into two parts: ① BRL cells were cultured with 50, 100, and 200 μg/mL PSISM-medium which were prepared by adding PSISM into the H-DMEM-medium containing 10%FBS in groups A1, B1, and C1, and simple H-DMEM-medium served as a control (group D1); ② BRL cells were seeded on 1%, 2%, and 3% PSISM hydrogel which were prepared by dissolving PSISM in sterile PBS solution containing 0.1 mol/L NaOH in groups A2, B2, and C2, and collagen type I gel served as a control (group D2). At 1, 3, and 5 days after culture, the morphology and survival of liver cells were detected by the Live/Dead fluorescent staining. The cell vitality was tested by cell counting kit-8 (CCK-8) assay. And the relative expressions of albumin (ALB), cytokeratin 18 (CK18), and alpha-fetoprotein (AFP) in hepatocytes were determined by real-time fluorescent quantitative PCR (RT-qPCR). Results The Live/Dead fluorescent staining showed the cells survived well in all groups. CCK-8 results displayed that the absorbance (A) value of group C1 was significantly higher than that of group D1 at 5 days after culture with PSISM-medium, and there was no significant difference between groups at other time points (P>0.05). After cultured with PSISM hydrogels, theA values of groups A2, B2, and C2 were significantly higher than those of group D2 at 3 and 5 days (P<0.05), theA value of group A2 was significantly higher than that of groups B2 and C2 at 5 days (P<0.05), but there was no significant difference between groups at other time points (P>0.05). RT-qPCR showed that the relative expressions of ALB and CK18 mRNA significantly increased and the relative expression of AFP mRNA significantly decreased in groups A1, B1, and C1 when compared with group D1 (P<0.05). The relative expression of CK18 mRNA in group C1 was significantly lower than that in groups A1 and B1 (P<0.05). The relative expressions of ALB and CK18 mRNA were significantly higher and the relative expression of AFP mRNA was significantly lower in groups A2, B2, and C2 than group D2 (P<0.05); the relative expression of CK18 mRNA in group A2 was significantly higher than that in group B2 (P<0.05), and the relative expression of AFP mRNA in group A2 was significantly lower than that in group C2 (P<0.05), but no significant difference was found between other groups (P>0.05). Conclusion PSISM has good compatibility with hepatocyte and can promote the vitality and functional gene expression of hepatocyte. PSISM is expected to be used as culture medium supplement or cell carrier for liver tissue engineering.