west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "spinal cord injury" 28 results
  • EXPERIMENTAL STUDY ON NEUROPROTECTIVE EFFECT OF 17β-ESTRADIOL AFTER CHRONIC SPINAL CORD INJURY IN OVARIECTOMIZED RATS

    Objective To investigate the effects of 17β-estradiol on the cell apoptosis after chronic spinal cord injury in ovariectomized rats. Methods A total of 90 female Wistar rats (weighing, 220-250 g) received removal of bilateral ovaries. After 2 weeks, the rats were randomly divided into 3 groups (n=30): sham-operation group (group A); chronic gradual spinal cord injury model and 17β-estradiol treatment group (group B); and chronic gradual spinal cord injury model and normal saline treatment group (group C). Rats of group A only received removal of spinous process at T10. Rats of groups B and C were made the models of chronic gradual spinal cord injury, and then 17β-estradiol (100 μg/kg, twice a week) and normal saline were given by peritoneal injection, respectively. The cell apoptosis and positive cells of Caspase-3 were examined by the TUNEL methods and Caspase-3 immunohistochemical staining at 1, 3, 7, 14, 28, and 60 days after modeling; and the neurological function was evaluated by Tarlov scale and inclined plane test scoring. Results At 14, 28, and 60 days after modeling, Tarlov scale and inclined plane test scores of group B were significantly better than those of group C (P lt; 0.05), but were significantly lower than those of group A (P lt; 0.05). At 28 days after modeling, HE staining showed that the edema of spinal gray matter and the neurons, the proliferation of glial cells and astrocytes, and less pathologic change were observed in group B; and the pathological changes in group B were mitigated than in group C. At 60 days after modeling, edema of spinal gray matter and the neurons was significantly ameliorated in group B. At 14, 28, and 60 days after modeling, the rate of Caspase-3 positive cells in group B was significantly lower than in group C (P lt; 0.05), but was significantly higher than in group A (P lt; 0.05). At 7, 14, 28, and 60 days after modeling, the cell apoptotic rate was significantly lower in group B than in group C (P lt; 0.05), but was significantly higher than in group A (P lt; 0.05). Conclusion 17β-estradiol can reduce the numbers of apoptotic cells and promote the nerve function recovery after chronic spinal cord injury of rats.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
  • IMPROVEMENT OF SPINAL CORD SEMI-TRANSECTED AND LUMP DEFECT MODEL BY QUANTITATE EMITRANSECTEDBLADE IN RATS

    Objective To investigate the effect of quantitative semi-transected blade on the improvement of spinal cord semi-transected and lump defect model. Methods Forty-eight male Sprague Dawley rats (weighing 220-250 g) were divided into the experimental group (n=24) and control group (n=24). The spinal cord semi-transected and lump defect model was made by self-made quantitative semi-transected blade in the experimental group, and by ophthalmic scalpel in the controlgroup. Then, the complications were observed; the electrophysiological results were detected before modeling and at 21 days after modeling; the histological changes at margin of lump defect were observed at 6 hours, 5 days, and 28 days; Basso, Beattie, and Bresnahan (BBB) scores were detected at 1, 3, 5, 7, 14, 21, 28, 35, 42, 56, and 84 days after modeling. Results There was significant difference in the mortality between the experimental group (0) and the control group (26.67%) (P=0.028). Electrophysiological examination: there was no significant difference in latency and ampl itude of motor evoked potentials (MEP) and sensory evoked potentials (SEP) between 2 groups at preoperation (P gt; 0.05); at 21 days after operation, latencies of MEP and SEP increased and the amplitude decreased in the control group, showing significant differences when compared with those in the experimental group and the preoperative values (P lt; 0.05), but no significant difference was seen between preoperation and postoperation in the experimental group (P gt; 0.05). Histological examination: in the control group, small hematoma could be observed at normal side at 6 hours after modeling, increased spaces of spinal tissue and perineural invasion were observed at 5 days, and small cavity formed without normal motoneurons at 28 days in the margin of lump defect. In the experimental group, no small hematoma could be observed at 6 hours after modeling, no inreversible injury of neuron and small cavity were observed at 5 days, and normal motoneurons were observed without small cavity at 28 days in the margin of lump defect.BBB scores: except the scores between experimental group and control group at affected side (P gt; 0.05), there were significant differences between groups, and between normal side and affected side for intragroup (P lt; 0.05). Conclusion Semi-transected and lump defect model could be set up successfully by self-made quantitate semi-transected blade, procedure is repetitive and the model is stable. This model is an ideal model for semi-transected spinal cord injury.

    Release date:2016-08-31 04:23 Export PDF Favorites Scan
  • EFFECT OF AMINOGUANIDINE ON SPINAL CORD EDEMA OF ACUTE SPINAL CORD INJURY IN RATS

    Objective Aminoguanidine (AG) can reduce brain edema and increase the recovery of neuron functions in surgical brain injury and stroke. To investigate the effect of AG on spinal cord injury (SCI) in rats and its mechanism. Methods A total of 150 adult male Sprague Dawley rats (weighing, 230-255 g) were divided into control group (group A, 25 rats without treatment), the sham-operated group (group B, 25 rats undergoing laminectomy), SCI group (group C, 25 SCI rats with injection of 5%DMSO), SCI + AG groups (groups D, E, and F, 25 SCI rats and AG injection of 75, 150, and 300 mg/kg, respectively). The optimal dosage of AG was screened by dry-wet weight method with the percentage of water content at 0, 12, 24, and 48 hours after injury. The blood-spinal cord barriar permeability was further detected by Evans blue (EB) method, aquaporins 4 (AQP4) mRNA expression by RT-PCR, AQP4 protein expression by immunohistochemistry and Western blot. Results AG injection at dosage of 150 mg/kg can significantly reduce edema of spinal cords at 12, 24, and 48 hours after SCI (P lt; 0.05), so 150 mg/kg was the optimal dosage. The EB content in group E was significantly lower than that in group C at 12, 24, and 48 hours after SCI, and the permeability of blood-spinal cord barrier was significantly decreased compared with group C (P lt; 0.05). The AQP4 mRNA expressions in groups B and E were significantly lower than that in group C at 12, 24, and 48 hours after SCI (P lt; 0.05). AQP4 protein expressions in groups B and E were significantly lower than that in group C at 24 and 48 hours after SCI (P lt; 0.05) by Western blot. Immunohistochemical staining revealed that AQP4 protein expression in group C was significantly higher than that in groups B and E (P lt; 0.05) at 48 hours after SCI, but no significant difference was found between group B and group E (P gt; 0.05). Conclusion AG injection at dosage of 150 mg/kg can induce spinal cord edema and injury in rats, which could be correlated with the down-regulation of AQP4 expression.

    Release date:2016-08-31 04:24 Export PDF Favorites Scan
  • SEQUENTIAL EXPRESSION OF HYPOXIA-INDUCIBLE FACTOR 1α AND ITS SIGNIFICANCE IN SECONDARY SPINAL CORD INJURY

    Objective To investigate the expression pattern of hypoxia-inducible factor 1α (HIF-1α) in experimental secondary spinal cord injury (SSCI) in rats and its potential effects on SSCI. Methods A total of 66 SD rats (female or male) with weight (250 ± 20) g were randomly divided into 3 groups: normal control group (group A, n=6), pseudo injury group (group B, n=6), and spinal cord injury (SCI) group (group C, n=54). In group A, no treatment was given as normal control. In groupB, only laminectomy was appl ied. In group C, laminectomy was appl ied and static compression model of SCI was built at T10 level. The expression of HIF-1α was measured with HE and immunohistochemical staining in groups A, B (1 hour after pseudo injury), and C (1, 3, 6, 12 hours and 1, 2, 3, 7, 14 days after SCI). Results All rats survived to the end of the experiment. HE staining showed that the spinal tissue of groups A and B were dense and the nucleus were round and big with l ight staining and clear nucleolus. The injured neuron at 1-12 hours after SCI of group C presented pyknosis and deep eosin staining. The swelling axon with bubbles and the disintegrated and disorganized medullary sheath in white matter appeared at 1-3 days after SCI. The hyperplasia of gl ial cells were obvious and gray matter cells were broken and apoptosis with cavities in injured spinal segment was observed at 7 and 14 days after SCI. Immunohistochemical staining showed that HIF-1α was poorly expressed in group A and increased a l ittle in group B. The positive expression in group C increased at 3 hours after SCI, which was found in spinal cord anterior horn neurons and a small amount of gangl ion cells. It reached peak at 1 day, maintained at a high level during 1-3 days and then decl ined. At 14 days, it appeared only in a small amount of gangl ion cells of white matter. There was no significant difference in the number of HIF-1α positive cells between groups A and B (t=1.325, P=0.137). The number of HIF-1α positive cells at each time point in group C was more than those in groups A and B (P lt; 0.05), and there were significant differences between all time points in group C (P lt; 0.05). Conclusion The expression of HIF-1α increases after SCI, it is related to the ischemia hypoxia after SSCI, and the expression pattern was correlated with the injury time.

    Release date:2016-08-31 05:41 Export PDF Favorites Scan
  • ESTABLISHMENT OF TRACTIVE SPINAL CORD INJURY MODEL IN RATS WITH A NOVEL SPINAL DISTRACTOR

    Objective To develop a tractive spinal cord injury model in rats with a novel spinal distractor so as to supply the rel iable animal model for researching the pathological mechanism and rehabil itation treatment of tractive spinal cordinjury. Methods A novel spinal distractor was prepared based on previous study. Sixty adult Sprague Dawley rats (weighing 250-300 g) were randomly divided into 5 groups, 12 rats in each group. T12-L3 spinal structures in the rear area were exposed and then T13-L2 spinal cords were revealed via dual laminectomy and kept integrity. In group A, a novel spinal distractor was placed without distraction; in groups B, C, D, and E, the T12-L3 spines were tracted with a novel spinal distractor which put on transverses process of T12-L3 vertebrae. During the tractive period, the somatosensory evoked potential (SEP) was used to monitor spinal cord function. The SEP ampl itudes descended 50% and kept distracting for 5 minutes in group B and for 10 minutes in group C, and descended 70% and kept distracting for 5 minutes in group D and for 10 minutes in group E, respectively to establ ish the tractive spinal cord injury model of T11-L2. The improved combine behavioral score (ICBS) was recorded at 1 and 7 days after injury in 6 rats of each group. The T13-L2 spinal tissue specimens were harvested for the morphological observation by HE and Nissl’s staining and for neurons counting. Results In group A, the ICBS score was 0 at 1 and 7 days after operation, showing significant difference when compared with the scores of the other groups (P lt; 0.05). The ICBS scores of groups D and E were significantly higher than those of groups B and C (P lt; 0.05). Edema and hemorrhage were observed in spinal cord surface and normal morphological structures were destroyed at different extent in groups B, C, D, and E at 1 day. There were adherence and congestion between spinal cord surface and peripheral issue without luster at 7 days, and dura depression was observed at the injury section, especially in group E. Necrosis and dissolution occurred in some neurons, and Nissl body structure dissolved or disappeared in groups B, C, D, and E. The neuron counting gradually decreased in accordance with the aggravation of injury in groups B, C, D, and E, showing significant difference when compared with group A (P lt; 0.05). Significant differences in neuron counting were found among groups B, C, D, and E (P lt; 0.05). Conclusion The tractive spinal cord injury model in rats can be successfully establ ished with novel spinal distractor, and the model establ ished by SEP ampl itude descending 70% and keeping distracting for 10 minutes is more suitable for study in tractive spinal cord injury.

    Release date:2016-08-31 05:44 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON BONE MARROW MESENCHYMAL STEM CELLS SEEDED IN CHITOSAN-ALGINATE SCAFFOLDS FOR REPAIRING SPINAL CORD INJURY

    Objective To investigate tissue engineered spinal cord which was constructed of bone marrow mesenchymal stem cells (BMSCs) seeded on the chitosan-alginate scaffolds bridging the both stumps of hemi-transection spinal cord injury (SCI) in rats to repair the acute SCI. Methods BMSCs were separated and cultured from adult male SD rat. Chitosan-alginate scaffold was produced via freeze drying, of which the structure was observed by scanning electron microscope (SEM) and the toxicity was determined through leaching l iquor test. Tissue engineered spinal cord was constructed by seeding second passage BMSCs on the chitosan-alginate scaffolds (1 × 106/mL) in vitro and its biocompatibil ity was observed under SEM at 1, 3, and 5 days. Moreover, 40 adult female SD rats were made SCI models by hemi-transecting at T9 level, and were randomly divided into 4 groups (each group, n=10). Tissue engineered spinal cord or chitosan-alginate scaffolds or BMSCs were implanted in groups A, B, and C, respectively. Group D was blank control whose spinal dura mater was sutured directly. After 1, 2, 4, and 6 weeks of surgery, the functional recovery of the hindl imbs was evaluated by the Basso-Beattie-Bresnahan (BBB) locomotor rating score. Other indexes were tested by wheat germ agglutinin-horseradish peroxidase (WGA-HRP) retrograde tracing, HE staining and immunofluorescence staining after 6 weeks of surgery. Results Chitosan-alginate scaffold showed three-dimensional porous sponge structure under SEM. The cells adhered to and grew on the surface of scaffold, arranging in a directional manner after 3 days of co-culture. The cytotoxicity of chitosan-alginate scaffold was in grade 0-1. At 2, 4, and 6 weeks after operation, the BBB score was higher in group A than in other groups and was lower in group D than in other groups; showing significant differences (P lt; 0.05). At 4 and 6 weeks, the BBB score was higher in group B than in group C (P lt; 0.05). After 6 weeks of operation, WGA-HRP retrograde tracing indicated that there was no regenerated nerve fiber through the both stumps of SCI in each group. HE and immunofluorescence staining revealed that host spinal cord and tissue engineering spinal cord l inked much compactly, no scar tissue grew, and a large number of neurofilament 200 (NF-200) positive fibers and neuron specitic enolase (NSE) positive cells were detected in the lesioned area in group A. In group B, a small quantity of scar tissue intruded into non-degradative chitosan-alginate scaffold at the lesion area edge, and a few of NSE flourescence or NF-200 flourescence was observed at the junctional zone. The both stumps of SCI in group C or group D were filled with a large number of scar tissue, and NSE positive cells or NF-200 positive cells were not detected. Otherwise, there were obviously porosis at the SCI of group D. Conclusion The tissue engineered spinal cord constructed by multi-channel chitosan-alginate bioscaffolds and BMSCs would repair the acute SCI of rat. It would be widely appl ied as the matrix material in the future.

    Release date:2016-08-31 05:47 Export PDF Favorites Scan
  • CLINICAL EFFECT OF METHYLPREDNISOLONE SODIUM SUCCINATE AND MOUSE NERVE GROWTH FACTOR FOR INJECTION IN TREATING ACUTE SPINAL CORD INJURY AND CAUDA EQUINA INJURY

    Objective To investigate the effect of methylprednisolone sodium succinate (MP) and mouse nerve growth factor (mNGF) for injection in treating acute spinal cord injury (ASCI) and cauda equina injury. Methods Between December 2004 and December 2007, 43 patients with ASCI and cauda equina injury were treated, including 33 males and 10 females with an average age of 43 years (range, 32-66 years). Injured vertebral columns were C2 in 1 case, C4 in 5 cases, C5 in 7cases, C6 in 3 cases, T8 in 1 case, T10 in 1 case, T11 in 2 cases, T12 in 3 cases, L1 in 9 cases, L2 in 5 cases, L3 in 3 cases, L4 in 1 case, and L5 in 2 cases. All the patients had sensory disturbance and motor dysfunction at admission. The Frankel scale was used for assessment of nerve function, 5 cases were rated as Grade A, 12 as Grade B, 22 as Grade C, and 4 as Grade D before operation. In 43 patients, 23 cases were treated with MP and mNGF (group A), 20 cases with MP only (group B). There was no significant difference in general data between 2 groups (P gt; 0.05). All the patients were admitted, received drug treatment within 8 hours of injury, and were given spinal canal decompression, bone transplantation, and internal fixation within 48 hours. The neurological function score systems of American Spinal Injury Association (ASIA) were used for neurological scores before treament, at 1 week and 2 years after treatment. The scores of the activity of daily l iving (ADL) were evaluated and compared. Results All the patients achieved heal ing of incision by first intention. Forty-three cases were followed up 24-61 months with an average of 30 months. Bone graft fusion was achieved after 6-17 months, 11 months on average with stable fixation. No death and compl ications of osteonecrosis and central obesity occurred. There was no significant difference in neurological function scores and ADL scores between 2 groups before treatment (P gt; 0.05); however, the neurological function scores and ADL scores at 1 week and 2 years after treatment were higher than those before treatment (P lt; 0.01) in 2 groups. Group A had higher neurological function scores and ADL scores than group B (P lt; 0.01). At 1 week and 2 years after treatment, the improvement rates of neurological function of group A (47.8%, 11/23 and 91.3%, 21/23) were significantly higher (P lt; 0.01) than those of group B (30.0%, 6/20 and 70.0%, 14/20). Conclusion MP and mNGF play an important role in improving the neurological function in patients with ASCI and cauda equina injury.

    Release date:2016-09-01 09:03 Export PDF Favorites Scan
  • THE ELECTRONNEUROGRAM MANIFESTATION OF ACUTE TRAUMATIC CERVICAL SPINAL CORD INJURY WITHOUT FRACTURE OR DISLOCATION

    In order to investigate the clinical significance of electron-neurogram for evaluating the degree and prognosis of acute traumatic cervical spinal cord injury without fracture or dislocation, electron-neurogram and sensory evoked potential (SEP) of the upper limbs in 4 such cases were recorded from the 3rd to 30th day after the injury. The results showed SEP and MEP could be obtained from every nerve in both upper limbs, and continous monitoring of SEP and MEP could provide valuable data to judge the degree and prognosis of the injury in spinal cord.

    Release date:2016-09-01 11:07 Export PDF Favorites Scan
  • Practice of Evidence-based Treatment Strategy for Cervical Spinal Cord Injury

    ObjectiveTo explore the practice of the evidence-based treatment strategy for cervical spinal cord injury. MethodsOne patient with cervical spinal cord injury was admitted to our hospital on January 3, 2013. We obtained medical evidences by searching databases and regulated the best treatment after evaluating the patient's comprehensive conditions. And then, the whole treatment strategy was fully implemented. Finally, the consequent results were evaluated. ResultsThe evidence-based medicine showed that the therapeutic targets were to save the residual function, prevent complications, and promote the recovery of neural function. Based on the real-time conditions of patient, we developed and practiced the evidence-based comprehensive rehabilitation programs, including absolute rest in bed, high-dose steroids, neurotrophic drugs, Chinese medicine rehabilitation and prevention of complications. After a follow-up of half a year, the patient obtained a good curative effect. The patient was saved from paralyzing. Moreover, the patient restored the capacity of standing, walking and a certain level of self-care ability. ConclusionFor the cervical spinal cord injury, treatment decision based on evidence-based medicine is more scientific, and it can ensure maximum benefit for the patients. Therefore, it is worthy of popularizing.

    Release date: Export PDF Favorites Scan
  • Common pedicle screw placement under direct vision combined with dome shaped decompression via small incision for double segment thoracolumbar fracture with nerve injury

    Objective To determine the feasibility, safety, and efficacy of common pedicle screw placement under direct vision combined with dome shaped decompression via small incision for double segment thoracolumbar fracture with nerve injury. Methods A retrospective analysis was performed on the clinical data of 32 patients with double segment thoracolumbar fracture with nerve injury undergoing common pedicle screw placement under direct vision combined with dome shaped decompression via small incision between November 2011 and November 2015 (combined surgery group), and another 32 patients undergoing traditional open pedicle screw fixation surgery (traditional surgery group). There was no significant difference in gender, age, cause of injury, time of injury-to-surgery, injury segments and Frankel classification of neurological function between two groups (P>0.05). The length of soft tissue dissection, the operative time, the blood loss during surgery, the postoperative drainage, the visual analogue scale (VAS) of incision after surgery, and recovery of neurological function after surgery were evaluated. Results All cases were followed up 9 to 12 months (mean, 10.5 months) in combined surgery group, and 8 to 12 months (mean, 9.8 months) in traditional surgery group. The length of soft tissue dissection, the operative time, the blood loss during surgery, the postoperative drainage, and the postoperative VAS score in the combined surgery group were significantly better than those in the traditional surgery group (P<0.05). Dural rupture during surgery and pedicle screw pulling-out at 6 months after surgery occurred in 2 cases and 1 case of the combined surgery group; dural rupture during surgery occurred in 1 case of the traditional surgery group. The X-ray films showed good decompression, and fracture healing; A certain degree of neurological function recovery was achieved in two groups. Conclusion Common pedicle screw placement under direct vision combined with dome shaped decompression via small incision can significantly reduce iatrogenic trauma and provide good nerve decompression. Therefore, it is a safe, effective, and minimally invasive treatment method for double segment thoracolumbar fracture with neurological injury.

    Release date:2017-06-15 10:04 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content