west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "steady state visual evoked potential" 2 results
  • A Wireless Smart Home System Based on Brain-computer Interface of Steady State Visual Evoked Potential

    Brain-computer interface (BCI) system is a system that achieves communication and control among humans and computers and other electronic equipment with the electroencephalogram (EEG) signals. This paper describes the working theory of the wireless smart home system based on the BCI technology. We started to get the steady-state visual evoked potential (SSVEP) using the single chip microcomputer and the visual stimulation which composed by LED lamp to stimulate human eyes. Then, through building the power spectral transformation on the LabVIEW platform, we processed timely those EEG signals under different frequency stimulation so as to transfer them to different instructions. Those instructions could be received by the wireless transceiver equipment to control the household appliances and to achieve the intelligent control towards the specified devices. The experimental results showed that the correct rate for the 10 subjects reached 100%, and the control time of average single device was 4 seconds, thus this design could totally achieve the original purpose of smart home system.

    Release date: Export PDF Favorites Scan
  • Study on Steady State Visual Evoked Potential Target Detection Based on Two-dimensional Ensemble Empirical Mode Decomposition

    Brain computer interface is a control system between brain and outside devices by transforming electroencephalogram (EEG) signal. The brain computer interface system does not depend on the normal output pathways, such as peripheral nerve and muscle tissue, so it can provide a new way of the communication control for paralysis or nerve muscle damaged disabled persons. Steady state visual evoked potential (SSVEP) is one of non-invasive EEG signals, and it has been widely used in research in recent years. SSVEP is a kind of rhythmic brain activity simulated by continuous visual stimuli. SSVEP frequency is composed of a fixed visual stimulation frequency and its harmonic frequencies. The two-dimensional ensemble empirical mode decomposition (2D-EEMD) is an improved algorithm of the classical empirical mode decomposition (EMD) algorithm which extended the decomposition to two-dimensional direction. 2D-EEMD has been widely used in ocean hurricane, nuclear magnetic resonance imaging (MRI), Lena image and other related image processing fields. The present study shown in this paper initiatively applies 2D-EEMD to SSVEP. The decomposition, the 2-D picture of intrinsic mode function (IMF), can show the SSVEP frequency clearly. The SSVEP IMFs which had filtered noise and artifacts were mapped into the head picture to reflect the time changing trend of brain responding visual stimuli, and to reflect responding intension based on different brain regions. The results showed that the occipital region had the strongest response. Finally, this study used short-time Fourier transform (STFT) to detect SSVEP frequency of the 2D-EEMD reconstructed signal, and the accuracy rate increased by 16%.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content