Objective To analyze the advances of cancer stem cell (CSC) in recent years, and to propose a prospect for CSC research and cancer therapy. Methods Articles about important advances of CSC theory and cancer therapy were reviewed, and then selected and summarized. Results In 2001, CSC was first put forward as a concept, till now, which has been confirmed in many tissues. In recent years, efforts were dedicated to such topics including: identification of CSC in sol id tumors, the origin of CSC, its niche and growth mechanism, cancer therapy, etc. According to the CSC theory, traditional therapeutic methods have deficiencies, and new treatment targeting CSC may thoroughly el iminate tumors. Conclusion At present, CSC theory is still controversial, while it proposed revolutionary methods and directions for the therapy of cancer.
OBJECTIVE: To isolate and characterize mesenchymal stem cells (MSCs) derived from bone marrow of Banna minipig inbred line (BMI). METHODS: BMI-MSCs was isolated from bone marrow by density gradient centrifugation and cultured in DMEM (containing 15% bovine serum) at 37 degrees C with humidified 5% CO2. These cultured stem cells were characterized in clonal growth, expression of specific markers and capability of differentiation. RESULTS: Mesenchymal stem cells were proliferative and could be expanded rapidly in vitro. Clonal growth of these cells can be observed when small amount of cells was inoculated. These cells were SH2, SH3, SH4, SB10 and SB21 positive. And it was proved that these cells possess osteo-differentiation ability, up-regulated alkaline phosphatase expression and calcium secretion after osteosupplement was added into the media for several days. CONCLUSION: Mesenchymal stem cells derived from bone marrow of BMI possess the general characters of stem cell.
Objective To investigate the myogenic differentiation of mesenchymal stem cells (MSCs) after being transplanted into the local muscle tissues. Methods The serious muscleinjured model was established by the way of radiation injury, incising, and freezing injury in 36 mouses. Purified MSCs derived from bone marrow of male mouse and MSCs induced by5-azacytidine(5-Aza-CR) were transplanted into the local of normal muscle tissues and injured muscle tissues of femal mouse. The quantity of MSCs and the myogenic differentiation of implanted MSCs were detected by the method of double labeling, which included fluorescence in situ DNA hybridization (FISH) and immuno-histochemistry on the 1st, 3rd, 6th, 9th, 12th, and 15th day after transplantation. Results The quantity of implanted MSCs decreased as timepassed. MSCs’ differentiation into myoblasts and positive expression of desmin were observed on the 15th day in purified MSCs group and on the 6th day in induced MSCs groups. Conclusion MSCs could differentiate into myoblasts after being implanted into the local of muscle tissues. The differentiationoccurs earlier in the induced MSCs group than that in purified MSCs group.
Objective To investigate the effect of homograft of marrow mesenchymal stem cells (MSCs) seeded onto poly-L-lactic acid (PLLA)/gelatin on repair of articular cartilage defects. Methods The MSCs derived from36 Qingzilan rabbits, aging 4 to 6 months and weighed 2.5-3.5 kg were cultured in vitroand seeded onto PLLA/gelatin. The MSCs/ PLLA/gelatin composite was cultured and transplanted into full thickness defects on intercondylar fossa. Thirty-six healthy Qingzilan rabbits were made models of cartilage defects in the intercondylar fossa. These rabbits were divided into 3 groups according to the repair materials with 12 in each group: group A, MSCs and PLLA/gelatin complex(MSCs/ PLLA/gelatin); group B, only PLLA/gelatin; and group C, nothing. At 4,8 and 12 weeks after operation, the gross, histological and immunohistochemical observations were made, and grading scales were evaluated. Results At 12 weeks after transplantation, defect was repaired and the structures of the cartilage surface and normal cartilage was in integrity. The defects in group A were repaired by the hylinelike tissue and defects in groups B and C were repaired by the fibrous tissues. Immunohistochemical staining showed that cells in the zones of repaired tissues were larger in size, arranged columnedly, riched in collagen Ⅱ matrix and integrated satisfactorily with native adjacent cartilages and subchondral bones in group A at 12 weeks postoperatively. In gross score, group A(2.75±0.89) was significantly better than group B (4.88±1.25) and group C (7.38±1.18) 12 weeks afteroperation, showing significant differences (P<0.05); in histological score, group A (3.88±1.36) was better than group B (8.38±1.06) and group C (13.13±1.96), and group B was better than group C, showing significant differences (P<0.05). Conclusion Transplantation of mesenchymal stem cells seeded onto PLLA/gelatin is a promising way for the treatment of cartilage defects.
Objective To investigate the method of cultivation and the feature of differentiation of spinal cordderived stem cells in vitro.Methods The neural stemcells from spinal cord of 15 days fetal rats were harvested and cultivated in aserumfree limited medium. The stem cells were induced to differentiate and theresults were identified by cellular immunohistochemistry. Results Lots of stem cells were obtained from the spinal cord of fetal rats and the sphere of stemcells was formed about 10 days. Neural stem cells can give rise to mature neurons and astrocytes.Conclusion Epidermal growth factor/basic fibroblast growth factor serum-free limited medium can promote the proliferation activity ofthe stem cells. Spinal cord-derived stem cells can differentiate into glial cells and neurons.
OBJECTIVE: To investigate the characteristic and phenotype of ectomesenchymal stem cells of human fetal facial processes and the procedure of spontaneous differentiation to smooth muscle cells. METHODS: The primary ectomesenchymal cells of E 50 human fetal facial processes were isolated by 2.5 g/L trypsin and cultured with DMEM/F 12 with 10(-6) U/L leukemia inhibitor factor(LIF). The morphology and growth rate were observed by inverted microscop. After being withdrawn LIF, the characteristic of cells were identified by immunohistochemistry and RT-PCR. Ultrastructure was observed by transmission electron microscope. RESULTS: The cultured cells displayed monolayer growth and were fibroblast-like with 2-4 processes. The cells were stainely positived for anti-human natural killer cell marker-1, Vimentin, S-100, neuron specific enolase, myoglobin and VIII factor, but negatively for glial fibrillary acidic protein, neural fiblament, alpha-SMA and cytokeratin in immunohistochemistry. Two days after being withdrawn the LIF, cells expressed alpha-SMA in protein and mRNA levels. The cells were rich in muscular filament-like structure and dense bodies under transmission electron microscope. CONCLUSION: Cultured cells are undifferentiated ectomesenchymal stem cells. The cells have the potential for differentiating spontaneously to smooth muscle cell.
ObjectiveTo investigate the impact of L-Phenylalanine on the efficiency of retinal pigment epithelial (RPE) cell derivation from human embryonic stem cells (hESCs) and explore the underlying mechanisms. MethodsH1 hESCs were routinely cultured with mTeSR medium and divided into control and experimental groups. When cells reached over-confluence, spontaneous differentiation was triggered using 10% KSR differentiation medium without bFGF. L-Phenylalanine (0.2 mmol/L) was supplemented in the experimental group from the 3rd week. The expression of RPE markers and Wnt signaling components in the two groups was detected by Real time-RCR, Western blot and Flow cytometry analyses. Purified hESC-RPE cells and PBS were injected into the subretinal space of sodium iodine-induced retinal degeneration rats separately. Retinal function was assessed by ERG 6 weeks after the transplantation. ResultsOn the 7th week, much more pigment cell clumps appeared in the experimental group compared to the control group. Within these areas there were monolayer hexagonal RPE cells full of pigment granules. The experimental group showed significantly higher expression of Pax6, MITF, Tyrosinase, RPE65, Wnt3a, Lef1 and Tcf7 genes than the control group (P < 0.01). Higher expression level of MITF and RPE65 proteins and higher percentage of RPE65 (+) cells (P < 0.01) were detected in the experimental group. 6 weeks after sub-retinal transplantation of hESC-RPE cells, the amplitudes of a-b wave in the transplanted eyes were significantly higher than those in the control eyes (P < 0.01) at the stimulus intensity of 3.0 cd·s/m2. ConclusionsL-Phenylalanine effectively promoted the differentiation of embryonic stem cells into retinal pigment epithelial cells, and its impacts on the Wnt/β-catenin signaling pathway may partially explain the underlying mechanisms. Subretinal transplantation of hESC-RPE remarkably improved the retinal functions of retinal degenerative animal models.
Objective To investigate the heterotopic odontogenesis ability ofDelta1 gene transfected human dental pulp stem cell (DPSC) and nanohydroxyapatite/collagen (nHAC) composite scaffold. Methods The cultured human DPSC was transfected with Delta1-enhanced green fluorescent protein recombinant retrovirus supernatant,and was selected by puromycin to obtain the positive cell clone. The experimental group contained the Delta1 transfected DPSC; however, the control group did not contain the Delta1 transfected DPSC but contained DPSC transfected with vectors only. The cells were seeded into the nHAC carriers and were cultured in the odonto-inductive medium. The growth of the transduced cells in the carriers was observed by the fluorescent phase contrast microscope and the scanning electron microscope (SEM). The cell-carrier composites were subcutaneously transplanted into the Delta1 transfected 8 nude mice (female, 8 weeks old). Eight weeks after operation,the composites were taken out and tested with the histological and the immunohistological methods.Results Green fluorescence was observed inthe cells in the experimental group, which were grown in the carriers by the fluorescent phase contrast microscope. Observed by SEM, great amounts of transduced DPSC were observed along the scaffold materials, even filling the porous structures of nHAC and secreting a lot of extracellular matrix. However, in the control group, much fewer cells were found in the carriers. All the 4 Delta1 transduced DPSC-nHAC composites produced dentin-like structures that lined the surfaces of some nHAC porous structures. The odontoblast-like cells extended the cytoplasmic processes into the dentinal matrix, which was interfaced with a pulp-like interstitial tissue infiltrated with the blood vessels. Dentin sialophosphoprotein was expressed in the odontoblast-like cells when immunohisochemistry was performed. The morphology of the control composite was a typical one of the fibrous connective tissue,and only a little dentin-like structure was found in 2 of the 8 control transplants. Conclution DPSC can be used as the recipient cell of the Delta1 gene for expression and secretion of the Delta1 protein. The composites of the transfected cells and nHAC can induce heterotopic odontogenesis, which indicates that Delta1 is a novel candidate for the gene enhanced dentinpulp composite engineering.
Objective To investigate the feasibility of differentiation of the marrow mesenchymal stem cells (MSCs) into the cells of the skin appendages andthe mechanism of their involvement in the wound healing. Methods The bone marrow was collected from Wistar rats by the flushing of the femurs, MSCs were isolated and purified by the density gradient centrifugation. Then, the MSCs were amplified and labelled with 5-bromo-2′-deoxyuridine (BrdU). The full-thickness skin wounds with an area of 1 cm×1 cm were made on the midback of the homogeneous male Wistar rats. At the same time, 1×106/ml BrdU-labelled MSCs were infused from thepenile vein. The specimens were harvested from the wound tissues on the 3rd dayand the 7th day after operation and were immunohistochemically stained by either BrdU or BrdU and pan-keratin. Results The BrdU positive cells appeared in thehypodermia, the sebaceous glands, and the hair follicles of the wounds, as wellas the medullary canal of the femurs. The double-staining showed the BrdU positive cells in the sebaceous glands and the hair follicles of the wounds expressedpan-keratin simultaneously. Conclusion During the course of the wound healing, MSCs are involved in the wound repair and can differentiate into the cells ofthe skin appendages under the microenvironment of the wound.
Objective To summarize the research progress of stem cell transplantation in treating spinal cord injury (SCI) at different stages based on the pathophysiological mechanism of SCI. Methods The relevant research literature at home and abroad was extensively reviewed to explore the impact of transplantation timing on the effectiveness of stem cell transplantation in treating SCI. Results Researchers performed different types of stem cell transplantation for subjects at different stages of SCI through different transplantation approaches. Clinical trials have proved the safety and feasibility of stem cell transplantation at acute, subacute, and chronic stages, which can alleviate inflammation at the injured site and restore the function of the damaged nerve cells. But the reliable clinical trials comparing the effectiveness of stem cell transplantation at different stages of SCI are still lacking. Conclusion Stem cell transplantation has a good prospect in treating SCI. In the future, the multi-center, large sample randomized controlled clinical trials are needed, with a focus on the long-term effectiveness of stem cell transplantation.