Objective To evaluate the effectiveness of combined anterolateral thigh-ilioinguinal Flow-through flaps for repairing complex lower limb defects. Methods A clinical data of 20 patients with complex lower limb injuries admitted between January 2018 and January 2024 was retrospectively analyzed. The cohort included 14 males and 6 females with an average age of 47.3 years (range, 29-65 years). Injury mechanisms comprised heavy-object trauma (n=7), traffic accidents (n=5), machinery crush injuries (n=5), and osteomyelitis (n=3). Defects involved the left (n=7) and right (n=13) limbs, with anatomical distributions including tibiofibular injuries (n=6), isolated tibial injuries (n=6), foot and ankle injuries (n=5), and femoral-tibial injuries (n=3). The size of soft tissue defects ranged from 23 cm×8 cm to 44 cm×12 cm. Reconstruction employed combined anterolateral thigh-ilioinguinal Flow-through flaps in the size of 24 cm×10 cm to 48 cm×14 cm. The recipient sites were sutured in primary closure in 12 cases, and 8 cases had no available vascular anastomosis sites in the recipient sites, and a cross-leg flap form was used to establish a temporary blood supply, and the flaps were cut off after 3-4 weeks. The donor sites in the thigh were directly sutured. During follow-up, the survival of the flaps, appearance, texture, and related complications were observed; the Vancouver scar scale (VSS) score was used to evaluate the scar condition of the flaps, the lower extremity function scale (LEFS) score was used to evaluate the function of the affected lower limb, and the visual analogue scale (VAS) score was used to evaluate the pain condition of the affected side. Results Postoperatively, the flap complete necrosis occurred in 1 case, marginal necrosis in 1 case, superficial infections in 2 cases, and venous thrombosis in 1 case. The remaining flaps survived completely with primary wound healing at both recipient and donor sites. Limb salvage was achieved in all patients. All patients were followed up with 12-24 months (mean, 18.4 months). All flaps had satisfactory color, texture, and contour. Fractures reached clinical union in all cases. Donor site morbidity included mild contralateral hip flexion/knee extension limitation (n=1), persistent hypoesthesia (n=3), and chronic pain (n=1) at 6 months. At 12 months after operation, the LEFS, VSS, and VAS scores on the affected side were 62.7±4.6, 3.5±1.1, and 1.2±0.6, respectively, which were superior to those at 1 month after operation (38.6±2.8, 8.5±1.4, 4.7±1.1), and the differences were significant (P<0.05). ConclusionThe anterolateral thigh-ilioinguinal Flow-through flaps for repairing complex lower limb injuries is a good method. The distal blood supply of the affected side recover well, the survival rate of the flap is high, and the function recovery of the affected limb is good.
Objective To evaluate the effectiveness of functional perforator flaps utilizing the superficial circumflex iliac artery as a vascular pedicle, as well as chimeric iliac bone flaps, in the reconstruction of composite tissue defects in the hand and foot. Methods A retrospective review of the clinical data from 13 patients suffering from severe hand or foot injuries, treated between May 2019 and January 2025, was conducted. The cohort comprised 8 males and 5 females, with ages ranging from 31 to 67 years (mean, 48.5 years). The injuries were caused by mechanical crush incidents (n=9) and traffic accidents (n=4). The distribution of injury sites included 8 cases involving the hand and 5 cases involving the foot. Preoperatively, all patients exhibited bone defects ranging from 2.0 to 6.5 cm and soft tissue defects ranging from 10 to 210 cm2. Reconstruction was performed using functional perforator flaps based on the superficial circumflex iliac artery and chimeric iliac bone flaps. The size of iliac bone flaps ranged from 2.5 cm×1.0 cm×1.0 cm to 7.0 cm×2.0 cm×1.5 cm, while the size of the soft tissue flaps ranged from 4 cm×3 cm to 15 cm×8 cm. In 1 case with a significant hand defect, a posterior interosseous artery perforator flap measuring 10.0 cm×4.5 cm was utilized as an adjunct. Likewise, an anterolateral thigh perforator flap measuring 25 cm×7 cm was combined in 1 case involving a foot defect. All donor sites were primarily closed. Postoperative flap survival was monitored, and bone healing was evaluated through imaging examination. Functional outcomes were assessed based on the location of the defects: for hand injuries, grip strength, pinch strength, and flap two-point discrimination were measured; for foot injuries, the American Orthopaedic Foot & Ankle Society (AOFAS) score, visual analogue scale (VAS) score, Maryland Foot Score, plantar pressure distribution and gait symmetry index (GSI) were evaluated. Results All flaps survived completely, with primary healing observed at both donor and recipient sites. All patients were followed up 6-18 months (mean, 12.2 months). No significant flap swelling or deformity was observed. Imaging examination showed a bone callus crossing rate of 92.3% (12/13) at 3 months after operation, and bone density recovered to more than 80% of the healthy side at 6 months. The time required for bone flap integration ranged from 2 to 6 months (mean, 3.2 months). One patient with a foot injury exhibited hypertrophic scarring at the donor site; however, no major complication, such as infection or bone nonunion, was noted. At 6 months after operation, grip strength in 8 patients involving the hand recovered to 75%-90% of the healthy side (mean, 83.2%), while pinch strength recovered to 70%-85% (mean, 80%). Flap two-point discrimination ranged from 8 to 12 mm, approaching the sensory capacity of the healthy side (5-8 mm). Among the 5 patients involving the foot, the AOFAS score at 8 months was 80.5±7.3, VAS score was 5.2±1.6. According to the Maryland Foot Score, 2 cases were rated as excellent and 3 as good. Gait analysis at 6 months after operation showed GSI above 90%, with plantar pressure distribution closely resembling that of the contralateral foot. Conclusion The use of functional perforator flaps based on the superficial circumflex iliac artery, combined with chimeric iliac bone flaps, provides a reliable vascular supply and effective functional restoration for the simultaneous repair of composite bone and soft tissue defects in the hand or foot. This technique represents a viable and effective reconstructive option for composite tissue defects in these anatomical regions.