To investigate the influence of the preload and supporting stiffness on the hearing compensation performance of round window stimulation, a coupling finite model composed of a human ear, an actuator and a support was established. This model was constructed based on a complete set of micro-computed tomography (Micro-CT) images of a healthy adult’s right ear by reverse engineering technology. The validity of the model was verified by comparing the model’s calculated results with experimental data. Based on this model, we applied different amplitude preloads on the actuator, and changed the support’s stiffness. Then, the influences of the actuator’s preload and the support’s stiffness were analyzed by comparing the corresponding displacements of the basilar membrane. The results show that after applying a preload on the actuator, its hearing compensation performance was increased at the middle and high frequencies, but was deteriorated at low frequencies; besides, compared with using the fascia as the actuator’s support in clinical practice, utilizing the titanium alloy to fabricate the support would enhance the hearing compensation performance of the round window stimulation in the whole frequency range.