west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "tetramethylpyrazine" 3 results
  • Effect of Tetramethylpyrazine and Rat CTGF miRNA Plasmids on Connective Tissue Growth Factor, Transforming Growth Factor-beta in High Glucose Stimulated Hepatic Stellate Cells

    The aim of this research is to evaluate the effect of tetramethylpyrazine (TMP) and connective tissue growth factor (CTGF) miRNA plasmids on the expressive levels of CTGF, transforming growth factor-beta (TGF-beta) and type Ⅰ collagen of rat hepatic stellate cells (HSC) which are stimulated by high glucose. The rat HSCs which were successfully transfected rat CTGF miRNA plasmids and the rat HSCs which were successfully transfected negative plasmids were cultured in vitro. After stimulus of the TMP and the high glucose, the protein levels and gene expressive levels of CTGF, TGF-beta and type Ⅰ collagen were tested. The results indicated that high glucose increased the expression of CTGF mRNA, CTGF protein, TGF-beta mRNA,TGF-beta protein and type Ⅰ collagen (P<0.05). The expressive levels of CTGF mRNA, CTGF protein, TGF-beta mRNA, TGF-beta and type Ⅰ collagen in TMP group were lower than those in high glucose group and showed statistically significant differences (P0.05). Compared with high glucose group, the expressive levels of CTGF mRNA, CTGF protein, TGF-beta mRNA, TGF-beta and type Ⅰ collagen in rat CTGF miRNA plasmid interference group were significantly lower (P<0.05). However, no statistically significant difference was found in CTGF mRNA and CTGF protein levels between TMP group and CTGF miRNA group (P>0.05), while type Ⅰ collagen levels showed statistically significant differences (P<0.05). It is concluded that high glucose could promote the expressions of CTGF, TGF-beta and type Ⅰ collagen, and TMP and rat CTGF miRNA plasmids could reduce the expressions of CTGF, TGF-beta, type Ⅰ collagen.

    Release date: Export PDF Favorites Scan
  • Experimental study on the repair of spinal cord injury by conducting hydrogel loaded with tetramethylpyrazine sustained-release microparticles

    Objective To investigate the neuroprotective effect of conducting hydrogel loaded with tetramethylpyrazine sustained-release microparticles (hereinafter referred to as “TGTP hydrogel”) on spinal cord injury rats. Methods Forty-eight adult female Sprague Dawley rats were randomly divided into 4 groups: sham operation group (group A), model group (group B), conductive hydrogel group (group C), and TGTP hydrogel group (group D), with 12 rats in each group. Only laminectomy was performed in group A, and complete spinal cord transection was performed in groups B, C, and D. Basso-Bettie-Bresnahan (BBB) score was used to evaluate the recovery of hind limb motor function of each group before modeling and at 1, 3, 7, 14, and 28 days after modeling, respectively. At 28 days after modeling, the rats were sacrificed for luxol fast blue (LFB) staining to detect myelin regeneration. Nissl staining was used to detect the survival of neurons. Immunohistochemical staining was used to evaluate the expression of inflammation-related factors [nuclear factor кB (NF-кB), tumor necrosis factor α (TNF-α), and interleukin 10 (IL-10)]. Immunofluorescence staining and Western blot were used to evaluate the expression of neurofilament 200 (NF200). RseultsBBB scores of group A were significantly better than those of the other three groups at all time points after modeling (P<0.05); at 14 and 28 days after modeling, there was no significant difference in BBB scores between groups C and D (P>0.05), but the BBB score of group D was significantly better than that of group B (P<0.05). LFB staining and Nissl staining showed that the structure of neurons and myelin in group A was intact, and the myelin integrity and survival number of neurons in group D were significantly better than those in groups B and C. Immunohistochemical staining showed that the absorbency (A) value of NF-кB and TNF-α in group A were significantly lower than those in groups B and C (P<0.05), the A value of IL-10 was significantly higher than that in the other three groups (P<0.05); the A value of NF-κB in group D was significantly lower than that in groups B and C, the A value of TNF-α in group D was significantly lower than that in group B, while the A value of IL-10 in group D was significantly higher than that in group B (P<0.05). Immunofluorescence staining showed that the structure of neurons and nerve fibers in group A was clear and the fluorescence intensity was high. The fluorescence intensity of NF200 in group D was higher than that in groups B and C, and some nerve fibers could be seen. Western blot analysis showed that the relative expression of NF200 in group A was the highest, and the relative expression of NF200 in group D was significantly higher than that in groups B and C (P<0.05). Conclusion The TGTP hydrogel can effectively promote the recovery of motor function in rats with spinal cord injury, and its mechanism may be related to the regulation of inflammatory response.

    Release date: Export PDF Favorites Scan
  • Experimental study of tetramethylpyrazine-loaded electroconductive hydrogel on angiogenesis and neuroprotection after spinal cord injury

    Objective To explore the mechanisms for repairing spinal cord injury (SCI) with tetramethylpyrazine-loaded electroconductive hydrogel (hereinafter referred to as “TGTP”). Mehtods A total of 72 female Sprague-Dawley rats were randomly divided into 4 groups: sham operation group (group A), SCI group (group B), SCI+electroconductive hydrogel group (group C), and SCI+TGTP group (group D). Only the vertebral plate was removed in group A, while the remaining groups were subjected to a whole transection model of spinal cord with a 2 mm gap in the lesions. The recovery of hindlimb motor function was evaluated by Basso, Beattie, Bresnahan (BBB) score and modified Rivlin-Tator inclined plate test before operation and at 1, 3, 7, 14, and 28 days after operation, respectively. Animals were sacrificed at 7 days and 28 days after modeling. Neovascularisation was observed by immunofluorescence staining of CD31 and the expression levels of angiopoietin 1 (Ang-1) and Tie-2 were assessed by Western blot assay. At 28 days postoperatively, the expression levels of pro-angiogenic related proteins, including platelet-derived growth factor B (PDGF-B), PDGF receptor β (PDGFR-β), vascular endothelial growth factor A (VEGF-A), and VEGF receptor 2 (VEGFR-2), were also assessed by Western blot. The fibrous scar in the injured area was assessed using Masson staining, while neuronal survival was observed through Nissl staining. Furthermore, LFB staining was utilized to detect myelin distribution and regeneration. Immunofluorescence and Western blot assay were employed to evaluate the expression of neurofilament 200 (NF200). Results The hindlimb motor function of rats in each group gradually recovered from the 3rd day after operation. The BBB score and climbing angle in group D were significantly higher than those in group B from 3 to 28 days after operation, and significantly higher than those in group C at 14 days and 28 days after operation (P<0.05). Masson staining showed that the collagen volume fraction in groups B-D were significantly higher than that in group A, and that in group D was significantly lower than that in groups B and C (P<0.05); a small amount of black conductive particles were scattered at the broken end in group D, and the surrounding collagen fibers were less than those in group C. Nissl and LFB staining showed that the structure of neurons and myelin sheath in the injured area of spinal cord in group D was relatively complete and continuous, and the number of Nissl bodies and the positive area of myelin sheath in group D were significantly better than those in groups B and C (P<0.05). NF200 immunofluorescence staining and Western blot assay results showed that the relative expression of NF200 protein in group D was significantly higher than that in groups B and C (P<0.05). CD31 immunofluorescence staining showed that the fluorescence intensity of group D was better than that of groups B and C at 28 days after operation, and tubular or linear neovascularization could be seen. The relative expressions of Ang-1 and Tie-2 proteins in group D were significantly higher than those in groups B and C at 7 and 28 days after operation (P<0.05). The relative expressions of PDGF-B and PDGFR-β proteins in group D were significantly higher than those in groups B and C, and group B was significantly higher than group C at 28 days after operation (P<0.05). The relative expressions of VEGF-A and VEGFR2 proteins in group D were higher than those in groups B and C, showing significant difference when compared with group B (P<0.05), but only the expression of VEGF-A protein was significantly higher than that in group C (P<0.05). There was significant difference only in VEGFR-2 protein between groups B and C (P<0.05). Conclusion TGTP may enhance the revascularization of the injured area and protect the neurons, thus alleviating the injury of spinal cord tissue structure and promoting the recovery of neurological function after SCI in rats.

    Release date:2024-02-20 04:11 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content