Objective To explore the effectiveness of thin free lateral femoral circumflex artery perforator flaps that dissected under the superficial fascia in repair of scar contracture deformity in hand and foot. Methods Between January 2017 and October 2020, 15 patients with scar contracture deformity in hand or foot were admitted. There were 9 males and 6 females; aged 6-42 years, with a median age of 23 years. Scar contracture lasted from 1 to 21 years, with a median of 13 years. There were 11 cases of scar contracture deformities in the hands and 4 cases in the feet, all of which showed different degrees of hand and foot joint dysfunction. After the scar contracture was released, the size of wounds ranged from 6 cm×4 cm to 9 cm×8 cm, including 12 cases with exposure of blood vessels, nerves, or tendons, and 4 cases with tendon defects. A thin free lateral circumflex femoral artery perforator flap that dissected under the superficial fascia was used to repair the wound. The size of flap ranged from 6.0 cm×5.0 cm to 10.0 cm×8.5 cm. Fascia strips were used to reconstruct tendons and the donor sites were sutured directly. Results The venous vascular crisis occurred in 1 flap, and the flap survived successfully after treatment. The rest flaps survived well, and the wounds healed by first intention. All incisions at donor sites healed by first intention. All patients were followed up 6-12 months after operation, with an average of 9 months. The flaps were in good shape and texture. The functions of the affected hand had been restored to a large extent. According to the upper limb function evaluation standard of the Society of Hand Surgery of the Chinese Medical Association, 7 cases were excellent and 4 cases were good. The deformity of the toe joint of the affected foot significantly improved. No muscular hernia, sensory numbness, or other complications occurred at the donor sites. Conclusion The thin free lateral femoral circumflex artery perforator flap that dissected under the superficial fascia is an effective method to repair scar contracture deformity of hand and foot with well appearance, good function recovery, and less complication of the donor sites.
Objective To explore the effectiveness of microdissected thin thoracodorsal arterial perforator flap (TDAP) in repairing diabetic foot ulcers (DFUs). Methods The clinical data of 11 patients with DFUs admitted between March 2020 and February 2021 were retrospectively analyzed, including 5 males and 6 females, aged from 22 to 67 years, with an average of 49.3 years. There were 10 cases of type 2 diabetes and 1 case of type 1 diabetes; the duration of diabetes ranged from 3 months to 25 years (median, 8 months). The duration of DFUs ranged from 6 days to 120 months (median, 1 month). There were 6 cases of grade 3 and 5 cases of grade 4 according to Wagner classification. The tissue necrosis and purulent secretions were found in all ulcer wounds, as well as different degrees of tendon and bone exposure; skin defects ranged from 5 cm×3 cm to 17 cm×6 cm. The DFUs were repaired by microdissected thin TDAP, including 6 cases of flaps (including 1 case of lobulated flap), ranging from 10.0 cm×4.5 cm to 26.0 cm×7.0 cm; 5 cases of chimeric perforator flaps, the range of the flap was 10.0 cm×4.5 cm to 16.0 cm×5.5 cm, and the range of the muscle flap was 6 cm×2 cm to 10 cm×3 cm. The donor site was sutured directly. Results The operation time ranged from 3.42 to 11.17 hours, with an average of 5.92 hours. All 11 flaps survived and no vascular crisis occurred; 1 patient had a sinus at the edge of the flap, and the surgical area healed well after dressing change. All 11 patients were followed up 6-12 months, with an average of 9 months. The flap texture was good, the recipient site was in good shape, and there was no swelling; the foot contour was good, the shoes were comfortable to wear, and the movement was good. The incision at the donor site healed by first intention, leaving only linear and concealed scar, without obvious depression deformity, and the shoulder joint function was good. Conclusion On the premise of ensuring sufficient blood supply to the lower extremities and strengthening perioperative management, the microdissected thin TDAP to repair DFUs wounds can achieve better effectiveness and appearance; however, the prolonged operation time increases the probability of anesthesia and surgical risks in patients with DFUs.
Objective To investigate the clinical application of high-frequency color Doppler ultrasound (HFCDU) in detecting perforators in the deep adipose layers for harvesting super-thin anterolateral thigh flap (ALTF). Methods Between August 2019 and January 2023, 45 patients (46 sides) with skin and soft tissue defects in the foot and ankle were treated, including 29 males and 16 females, aged from 22 to 62 years, with an average of 46.7 years. The body mass index ranged from 19.6 to 36.2 kg/m2, with an average of 23.62 kg/m2. The causes of injury included traffic accident injury in 15 cases, heavy object crush injury in 20 cases, mechanical injury in 8 cases, heat crush injury in 1 case, and chronic infection in 1 case. There were 20 cases on the left side, 24 cases on the right side, and 1 case on both sides. After thorough debridement, the wound size ranged from 5 cm×4 cm to 17 cm×11 cm. All patients underwent free super-thin ALTF transplantation repair. HFCDU was used to detect the location of the perforators piercing the deep and superficial fascia, as well as the direction and branches of the perforators within the deep adipose layers before operation. According to the preoperative HFCDU findings, the dimensions of the super-thin ALTF ranged from 6 cm×4 cm to 18 cm×12 cm. The donor sites of the flaps were directly sutured. Results A total of 55 perforators were detected by HFCDU before operation, but 1 was not found during operation. During operation, a total of 56 perforators were found, and 2 perforators were not detected by HFCDU. The positive predictive value of HFCDU for identifying perforator vessels was 98.2%, and the sensitivity was 96.4%. Among the 54 perforators accurately located by HFCDU, the orientation of the perforators in the deep adipose layers was confirmed during operation. There were 21 perforators (38.9%) traveled laterally and inferiorly, 12 (22.2%) traveled medially and inferiorly, 14 (25.9%) traveled laterally and superiorly, 5 (9.3%) traveled medially and superiorly, and 2 (3.7%) ran almost vertically to the body surface. Among the 54 perforators accurately located by HFCDU, 35 were identified as type 1 perforators and 12 as type 2 perforators (HFCDU misidentified 7 type 2 perforators as type 1 perforators). The sensitivity of HFCDU in identifying type 1 perforators was 100%, with a positive predictive value of 83.3%. For type 2 perforators, the sensitivity was 63.2%, and the positive predictive value was 100%. The surgeries were successfully completed. The super-thin ALTF had a thickness ranging from 2 to 6 mm, with an average of 3.56 mm. All super-thin ALTF survived, however, 1 flap experienced a venous crisis at 1 day after operation, but it survived after emergency exploration and re-anastomosis of the veins; 1 flap developed venous crisis at 3 days after operation but survived after bleeding with several small incisions; 3 flaps had necrosis at the distal edge of the epidermis, which healed after undergoing dressing changes. All 45 patients were followed up 6-18 months (mean, 13.6 months). Three flaps required secondary defatting procedures, while the rest had the appropriate thickness, and the overall appearance was satisfactory. Conclusion Preoperative application of HFCDU to detect the perforator in the deep adipose layers can improve the success and safety of the procedure by facilitating the harvest of super-thin ALTF.